2103-454 Ventilation and Air Conditioning

Cooling Load Calculations

by

Assist. Prof. Dr. Tul Manewattana.
Chulalongkorn University
Bangkok, THAILAND

November 2010

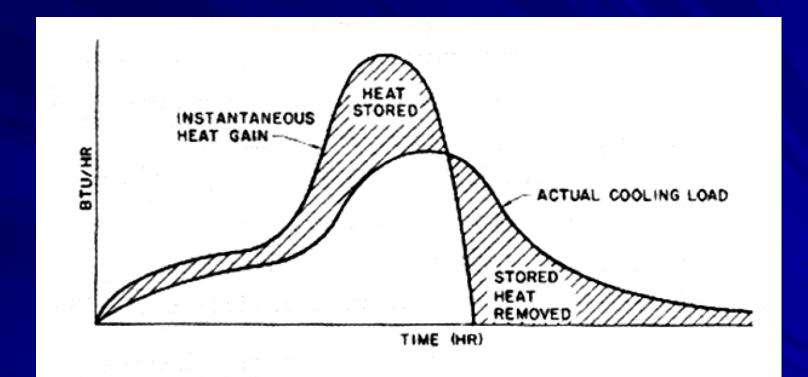


Fig. 3-Actual Cooling Load, Solar Heat Gain, West Exposure, Average Construction

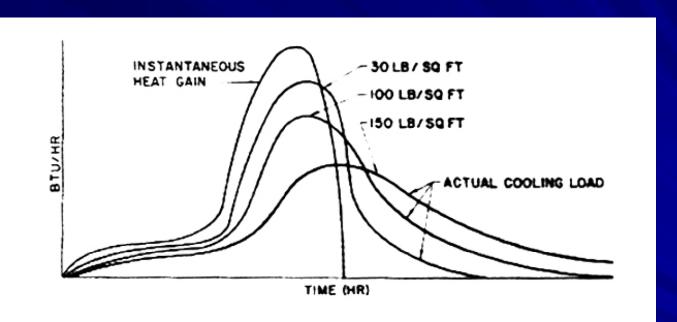


Fig. 5-Actual Cooling Load, Solar heat Gain, Light, Medium and Heavy Construction

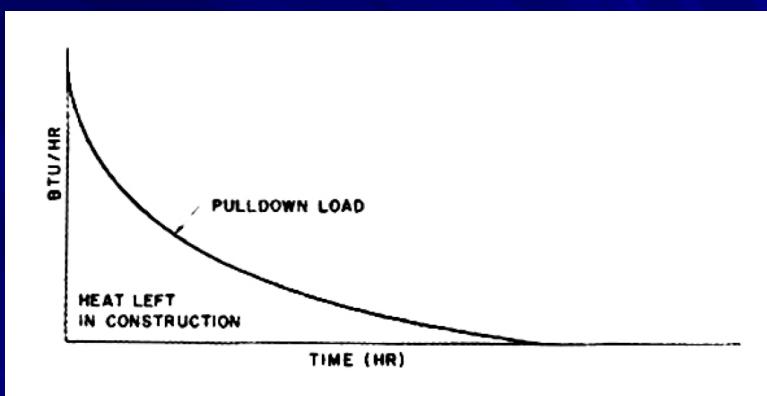


FIG. 6-PULLDOWN LOAD, SOLAR HEAT GAIN, WEST EXPOSURE, 16-HOUR OPERATION

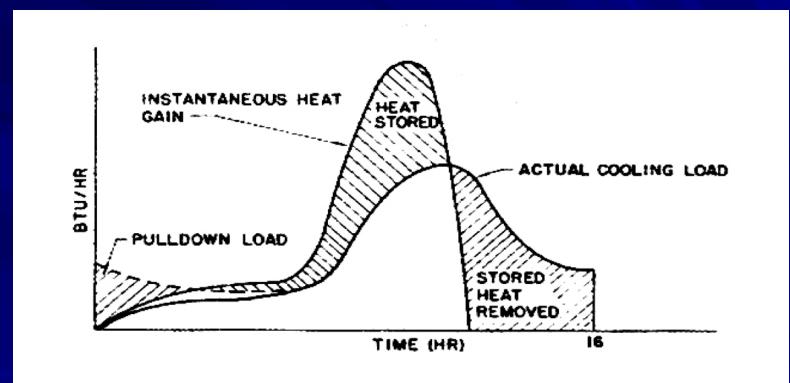


FIG. 7-ACTUAL COOLING LOAD, SOLAR HEAT GAIN, WEST EXPOSURE, 16-HOUR OPERATION

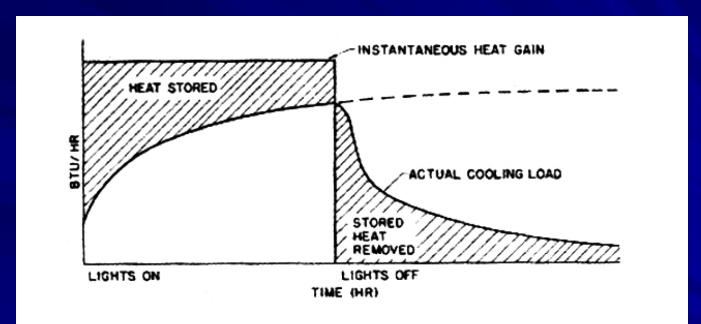
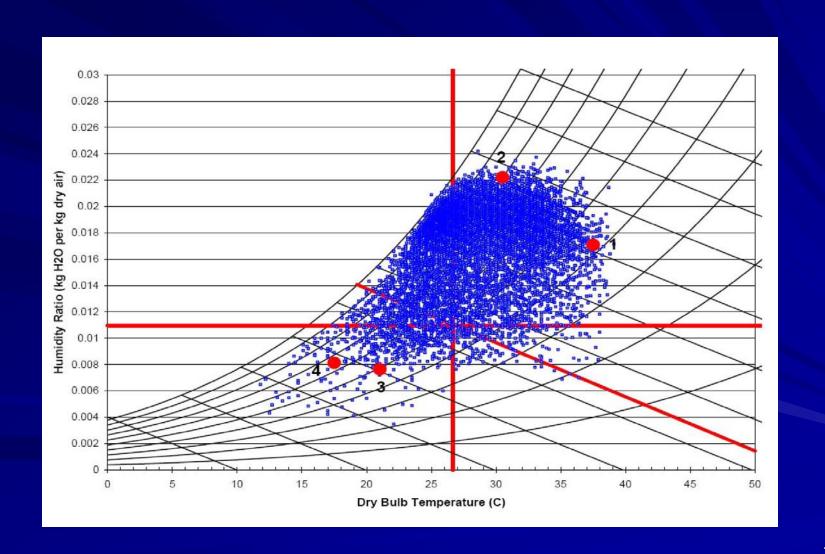


Fig. 4- Actual Cooling Load from Fluorescent Lights, Average Construction

Outdoor Design Condition

	Design conditions for BANGKOK, Thailand														
									Ť						
Station Info	ormation														
									Hours +/-	Time zone					
Station nam	ie			WMO#	Lat	Long	Elev	StdP	UTC	code	Period				
1a				1b	1c	1d	1e	1f	1g	1h	1i				
BANGKO	K			484550	13.73N	100.57E	20	101.08	7.00	SEA	8201				
						100.01.2		101100		02/1	020.				
Annual Hea	ating and Hu	midificatio	n Design Co	onditions											
Coldest	Heatin	na DB			idification D	P/MCDB and				Coldest mont			MCWS	/PCWD	
month				99.6%	MODE	20	99%	14000		1%	1	, .		6% DB	
2	99.6% 3a	99% 3b	DP 4a	HR 4b	MCDB 4c	DP 4d	HR 4e	MCDB 4f	WS 5a	MCDB 5b	WS 5c	MCDB 5d	MCWS 6a	PCWD 6b	
2	Ja	30	70	40	40	40	40	41	oa	OD	00	ou	Oa	OD	
12	18.7	20.3	11.7	8.6	23.0	13.3	9.5	23.7	6.8	27.4	5.6	27.8	1.0	N/A	
Annual Cod	oling, Dehun	nidification	, and Enthal	lpy Design (Conditions										
	Hottest			Cooling D	DR/MCWB			1		Evaporation	WP/MCDR			MCWS	/DCW/D
Hottest	month	0.	4%	19		29	%	0.4	4%	Lvaporation 19		2	%		% DB
month	DB range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD
7	8	9a	9b	9c	9d	9e	9f	10a	10b	10c	10d	10e	10f	11a	11b
4	7.1	35.7	26.4	35.0	26.4	34.4	26.2	28.0	33.0	27.6	32.4	27.2	31.8	2.9	N/A
			Dohumidifia	ation DP/MC	'DB and BB				I		Entholo	y/MCDB			I
	0.4%		Denamidino	1%	DD allu HK	1	2%		0.4	1%	1		2	%	
DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	
12a	12b	12c	12d	12e	12f	12g	12h	12i	13a	13b	13c	13d	13e	13f	•
26.7	22.4	30.2	26.4	21.9	29.9	26.1	21.6	29.7	89.5	33.0	87.9	32.8	86.4	32.1	
20.7		00.2	20.7	21.0	20.0	20	21.0	20	00.0	00.0	07.0	02.0	00.4	OZ	


Outdoor Design Condition

Extreme An	nual Desig	n Condition	ıs												
Exa onio Ai	ilidai Booig	in containen													
			Extreme		Extreme	Annual DB				n-Year Re	turn Period	Values of Ex	treme DB		
Extre	eme Annua	I WS	Max	Me	ean	Standard	deviation	n=5 \	/ears	n=10	years	n=20 years		n=50 years	
1%	2.5%	5%	WB	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min
14a	14b	14c	15	16a	16b	16c	16d	17a	17b	17c	17d	17e	17f	17g	17h
6.4	5.7	5.1	33.2	37.4	16.3	8.0	2.4	38.0	14.6	38.4	13.2	38.9	11.8	39.5	10.1
Monthly De	sign Dry B	ulb and Mea	ın Coincider	nt Wet Bulb	Temperatu	res									
	.1	an	F ₆	eb	N.	1ar	Δ	\Dr	M	av	.1	un			
%	DB	MCWB	DB	MCWB	DB	MCWB	DB	MCWB	DB	MCWB	DB	MCWB			
,	18a	18b	18c	18d	18e	18f	18g	18h	18i	18j	18k	18/			
0.4%	33.9	24.3	34.6	24.4	35.8	24.7	36.7	25.9	36.7	26.7	35.2	26.5			
1%	33.5	24.3	34.0	24.8	35.2	25.1	36.2	26.3	36.2	26.9	34.8	26.4			
2%	33.0	24.3	33.5	24.9	34.7	25.4	35.8	26.5	35.7	26.9	34.2	26.4			
		Jul	A	ug	S	Бер		Oct	N	ov)ec			
%	DB	MCWB	DB	MCWB	DB	MCWB	DB	MCWB	DB	MCWB	DB	MCWB			
	18m	18n	180	18p	18q	18r	18s	18t	18u	18v	18w	18x			
0.4%	34.8	26.3	34.3	26.3	34.0	26.2	33.8	26.2	34.0	25.3	33.9	24.5			
1%	34.3	26.2	33.8	26.1	33.6	26.1	33.3	26.1	33.5	25.2	33.3	24.3			
2%	33.9	26.1	33.3	25.9	33.1	26.1	32.9	26.1	33.1	25.1	32.9	24.1			

Outdoor Design Condition

Monthly De	esign Wet B	ulb and Mea	ın Coincide	nt Dry Bulb	Temperatu	ires								
	Ja	an	Fe	eb		<i>M</i> ar	A	.pr	I 1	May	J	un		
%	WB	MCDB	WB	MCDB	WB	MCDB	WB	MCDB	WB	MCDB	WB	MCDB		
	19a	19b	19c	19d	19e	19f	19g	19h	19i	19j	19k	191		
0.4%	26.8	30.5	27.7	32.4	27.7	32.8	28.6	34.1	28.2	33.6	27.7	32.3		
1%	26.4	30.3	27.2	31.5	27.4	32.4	28.2	33.4	28.0	33.4	27.6	32.1		
2%	26.1	30.2	26.9	31.0	27.2	32.0	28.1	33.1	27.7	32.9	27.3	31.7		
	J	ul	A	ug	5	Sep		Oct	<u> </u>	Nov	D)ec		
%	WB	MCDB	WB	MCDB	WB	MCDB	WB	MCDB	WB	MCDB	WB	MCDB		
	19m	19n	190	19p	19q	19r	19s	19t	19u	19v	19w	19x		
0.4%	27.6	32.3	27.2	31.7	27.5	31.2	27.5	31.7	26.9	31.4	26.4	26.4 30.6		
1%	27.2	31.7	27.0	31.5	27.2	31.1	27.2	31.3	26.6	31.0	25.9			
2%	27.0	31.4	26.7	31.1	26.9	30.9	26.9	30.9	26.2	30.7	25.5	30.0		
Monthly Mo	ean Daily Te	mperature l	Range											
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	1		
20a	20b	20c	20d	20e	20f	20g	20h	20i	20j	20k	201	_		
8.9	7.8	7.3	7.1	6.8	6.1	6.1	6.0	6.4	6.4	7.3	8.8			
WMO#	Model Mate				Lat	1 -414 0				Long	Langituda			
Elev	Elevation, m	orological Or	ganization n	umber	Lat StdP	Latitude, °	essure at st	ation elevation	n kPa	Long	Longitude,			
DB	,	nperature, °0			DP	Dew point to), Ki G	WB	Wet bulb te	mperature, °C		
WS	Wind speed, m/s Enth										tio, grams of mo	sture per kilogra	ım c	
MCDB		ident dry bull		re, °C	MCDP			oint temperat		MCWB	Mean coinc	ident wet bulb te	mperature, °C	
MCWS Mean coincident wind speed, m/s PCWD Prevailing coincident wind direction, °, 0 = North, 90 = East														

Outdoor Design Conditions

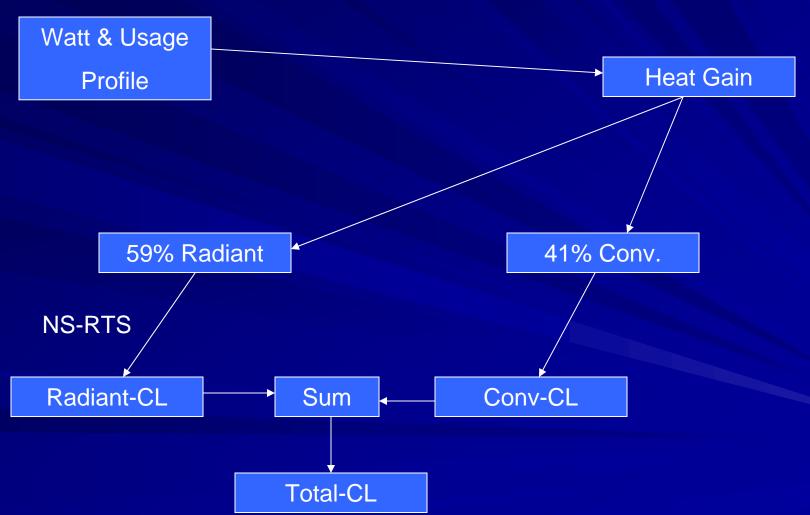
Indoor Design Condition

Table 1 General Design Criteria ^{a, b}										
			gn Conditions		Circulation,					
General Category	Specific Category	Winter	Summer	Air Movement	air changes per hour					
	Cafeterias and Luncheonettes	21 to 23°C 20 to 30% rh	26°C ^d 50% rh	0.25 m/s at 1.8 m above floor	12 to 15					
Dining	Restaurants	21 to 23°C 20 to 30% rh	23 to 26°C 55 to 60% rh	0.13 to 0.15 m/s	8 to 12					
and Entertainment Centers	Bars	21 to 23°C 20 to 30% rh	23 to 26°C 50 to 60% rh	0.15 m/s at 1.8 m above floor	15 to 20					
	Nightclubs and Casinos	21 to 23°C 20 to 30% rh	23 to 26°C 50 to 60% rh	below 0.13 m/s at 1.5 m above floor	20 to 30					
	Kitchens	21 to 23°C	29 to 31°C	0.15 to 0.25 m/s	12 to 15 ^g					
Office Buildings		21 to 23°C 20 to 30% rh	23 to 26°C 50 to 60% rh	0.13 to 0.23 m/s 4 to 10 L/(s·m²)	4 to 10					

Indoor Design Condition

	Table 1 General Des	ign Criteria ^{a, b} (<i>Concluded</i>)	
Noise ^c	Filtering Efficiencies (ASHRAE Standard 52.1)	Load Profile	Comments
NC 40 to 50°	35% or better	Peak at 1 to 2 PM	Prevent draft discomfort for patrons waiting in serving lines
NC 35 to 40	35% or better	Peak at 1 to 2 PM	
NC 35 to 50	Use charcoal for odor control with manual purge control for 100% outside air to exhaust ±35% prefilters	Peak at 5 to 7 PM	
NC 35 to 45 ^f	Use charcoal for odor control with manual purge control for 100% outside air to exhaust $\pm 35\%$ prefilters	Nightclubs peak at 8 PM to 2 AM Casinos peak at 4 PM to 2 AM Equipment, 24 h/day	Provide good air movement but prevent cold draft discomfort for patrons
NC 40 to 50	10 to 15% or better	h >	Negative air pressure required for odor control (also see <u>Chapter 31</u>)
NC 30 to 45	35 to 60% or better	Peak at 4 PM	

Components of Cooling Load


- 1) External Load
- 2) Internal Load

3) Outdoor Air Load

- 1.1) Roofs
- 1.2) Wall
- 1.3) Glass (Windows)
- 1.4) Ceiling
- 1.5) Floor
- 1.6) Partition
 - 2.1) People
 - 2.2) Lights
 - 2.3) Power
 - 2.4) Appliances

Lighting Heat Gain

Lighting

Cooling Load from Lights

ตารางที่ 7: Cooling Load Component of Lighting

	Usage	Heat Gain, Watt			Nonsolar RTS	Radiant	Total	
	Profile	Total	Convective	Radiant	Zone Type 8	Cooling Load	Cooling Load	
Hour	%	100%	41%	59%	%	Watt	Watt	
1	0	0	0	0	49	31.2	31.2	
2	0	0	0	0	17	31.2	31.2	
3	0	0	0	0	9	28.6	28.6	
4	0	0	0	0	5	26	26	
5	0	0	0	0	3	23.4	23.4	
6	0	0	0	0	2	20.8	20.8	
7	100	440.7	180.7	260	2	145.6	326.3	
8	100	440.7	180.7	260	1	187.2	367.9	
9	100	440.7	180.7	260	1	208	388.7	
10	100	440.7	180.7	260	1	218.4	399.1	
11	100	440.7	180.7	260	1	223.6	404.3	
12	100	440.7	180.7	260	1	226.2	406.9	
13	100	440.7	180.7	260	1	228.8	409.5	
14	100	440.7	180.7	260	1	228.8	409.5	
15	100	440.7	180.7	260	1	231.4	412.1	
16	100	440.7	180.7	260	1	234	414.7	
17	100	440.7	180.7	260	1	236.6	417.3	
18	100	440.7	180.7	260	1	239.2	419.9	
19	0	0	0	0	1	114.4	114.4	
20	0	0	0	0	1	72.8	72.8	

0

Column Number

21

23

24

52

41.6

36.4

33.8

8

41.6

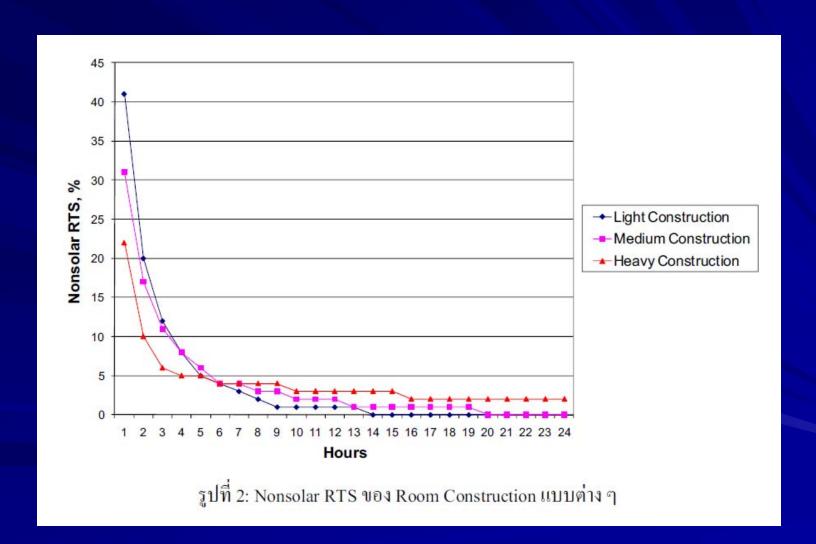
36.4

33.8

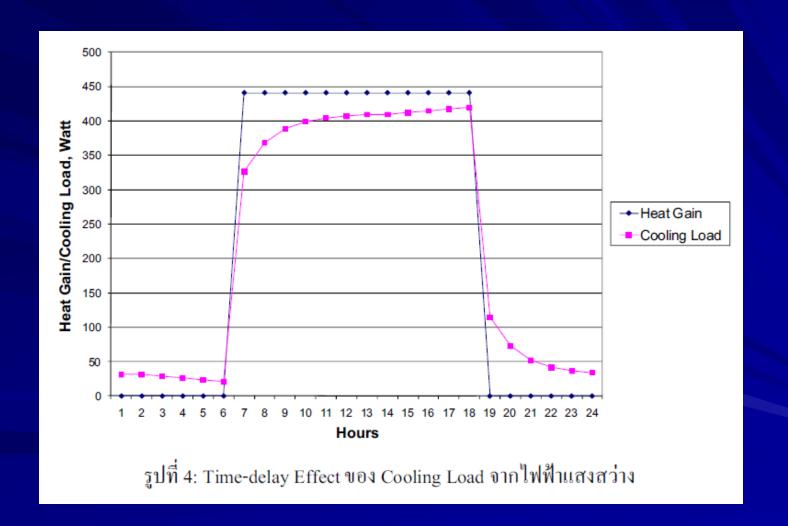
Convective/Radiant Split

ตารางที่ 6: Convective and Radiant Percentages of Total Sensible Heat Gain

	Radi ant	Convective
Heat Gain Source	Heat, %	Heat, %
Transmitted solar, no inside shade	100	0
Window solar, with inside shade	63	37
Absorbed (by fenestration) solar	63	37
Fluorescent lights, suspended, unvented	67	33
recessed, vented to return air	59	41
recessed, vented to return air and supply air	19	81
Incandescent lights	80	20
People	SeeTa	able14
Conduction, exterior walls	63	37
exterior roofs	84	16
Infiltration and ventilation	0	100
Machinery and appliances	20 to 80	80 to 20
Sources: Pedersen et al. (1998), Hosni et al. (1999).		


_;

Nonsolar RTS Values

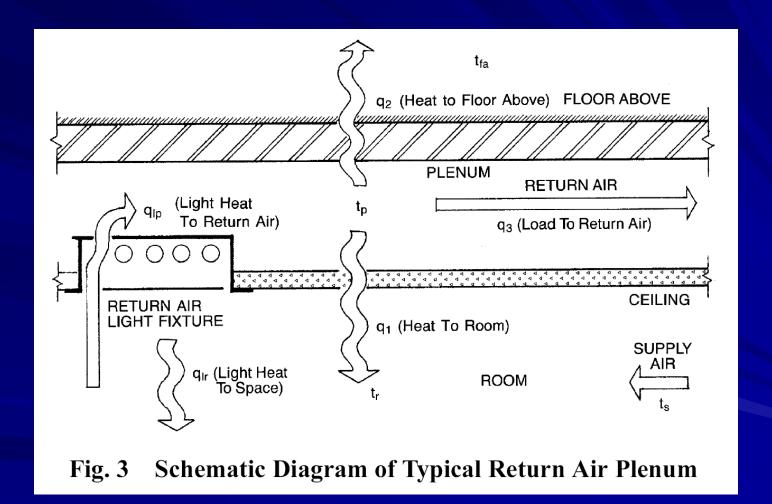

ตารางที่ 4: Nonsolar RTS Values

																				Interio	r Zones				
				Li	ght					Med	lium					He	avy				ght	Me	dium	Heavy	
%		Wi	th Carp	et	N	o Carp	et	Wi	th Caŋ	pet	No	Caŋ	et	Wi	th Car	pet	No	Carp	et	With Carpet	bet	pet bet	No Carpet	With Carpet	No Carpet
Glas	s	10%	50% 9	00%	10%	50%	90%	10%	50%	90%	10%	50%	90%	10%	50%	90%	10%	50%	90%	Çar Car	g S	With	G &	Ğ. Ğ.	Car S
Zone T	$\overline{}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Hou	ır											Ra		Time F	actor,	%	•		,	•					
0		47	50	53	41	43	46	46	49	52	31	33	35	34	38	42	22	25	28	46	40	46	31	33	21
1		19	18	17	20	19	19	18	17	16	17	16	15	9	9	9	10	9	9	19	20	18	17	9	9
2		11	10	9	12	11	11	10	9	8	11	10	10	6	6	5	6	6	6	11	12	10	11	6	6
3		6	6	5	8	7	7	6	5	5	8	7	7	4	4	4	5	5	5	6	8	6	8	5	5
4		4	4	3	5	5	5	4	3	3	6	5	5	4	4	4	5	5	4	4	5	3	6	4	5
5		3	3	2	4	3	3	2	2	2	4	4	4	4	3	3	4	4	4	3	4	2	4	4	4
6		2	2	2	3	3	2	2	2	2	4	3	3	3	3	3	4	4	4	2	3	2	4	3	4
7		2	1	1	2	2	2	1	1	1	3	3	3	3	3	3	4	4	4	2	2	1	3	3	4
8		1	1	1	1	1	1	1	1	1	3	2	2	3	3	3	4	3	3	1	1	1	3	3	4
9		1	1	1	1	1	1	1	1	1	2	2	2	3	3	2	3	3	3	1	1	1	2	3	3
10		1	1	1	1	1	1	1	1	1	2	2	- 1	3	2	2	3	3	3	1	1	1	2	3	3
11		1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	3	3	3	1	1	1	2	2	3
12		1	1	1	1	1	1	1	1	1	1	1	1	2	2	2	3	3	3	1	1	1	1	2	3
13		1	1	1	0	1	0	1	1	1	1	1	1	2	2	2	3	3	2	1	1	1	1	2	3
14		0	0	1	0	1	0	1	1	1	1	1	1	2	2	2	3	2	2	1	0	1	1	2	3
15		0	0	1	0	0	0	1	1	1	1	1	1	2	2	2	2	2	2	0	0	1	1	2	3
16		0	0	0	0	0	0	1	1	1	1	1	1	2	2	2	2	2	2	0	0	1	1	2	3
17		0	0	0	0	0	0	1	1	1	1	1	1	2	2	2	I	2	2	0	0	1	1	2	2
18	- 1	0	0	0	0	0	0	1	1	1	1	1	1	2	2	1	2	2	2	0	0		1	2	2
19	- 1	0	0	0	0	0	0	0	1	0	0	1	1	2	2	1	2	2	2	0	0		0	2	2
20		0	0	0	0	0	0	0	0	0	0	1	1	2	1	1	2	2	2	0	0	0	0	2	2
21		0	0	0	0	0	0	0	0	0	0	1	1	2	1	1	2	2	2	0	0		0	2	2
22		0	0	0	0	0	0	0	0	0	0	1	0	1	1	1		2	2	0	0		0	1	2
23	}	100	100	100	100	100	100	0	100	100	100	100	100	100	100	100	2	2	100	100	100	_	100		100
		100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

Nonsolar RTS

Cooling Load from Lights

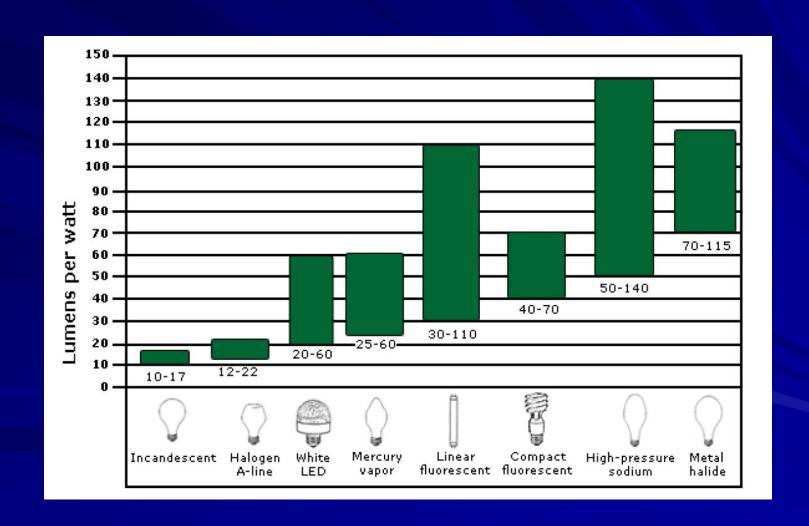
Calculation Example

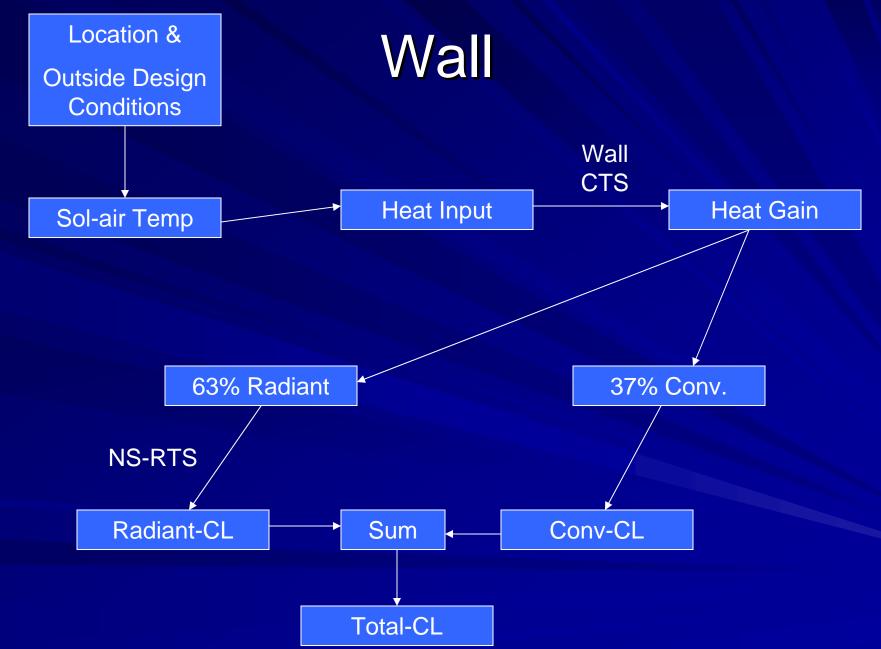

ตารางที่ 8: รายละเอียดวิธีการคำนวณ Radiant Cooling Load

	Column Number														
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	Hour	Radiant Heat Gain 59% (Watt)	Effect from	Effect from HR = 8	Effect from HR = 9 (Watt)	Effect from HR = 10 (Watt)	Effect from HR = 11 (Watt)	Effect from HR = 12 (Watt)	Effect from HR = 13 (Watt)	Effect from HR = 14 (Watt)	Effect from HR = 15 (Watt)	Effect from HR = 16 (Watt)	Effect from HR = 17 (Watt)	Effect from HR = 18 (Watt)	Radiant Cooling Load (Watt)
1	1	0	(watt)	(watt)	(watt)	(watt)	(watt)	(watt)	(watt)	(watt)	(watt)	(watt)	(watt)	(watt)	(watt)
1	2	0													
1	3	0													
1	4	0													
1	5	0													
1	6	0													
1	7	260	127.4												
1	8	260	44.2	127.4											
1	9	260	23.4	44.2	127.4										
1	10	260	13.0	23.4	44.2	127.4									
1	11	260	7.8	13.0	23.4	44.2	127.4								
1	12	260	5.2	7.8	13.0	23.4	44.2	127.4							
1	13	260	5.2	5.2	7.8	13.0	23.4	44.2	127.4						
1	14	260	2.6	5.2	5.2	7.8	13.0	23.4	44.2	127.4					
1	15	260	2.6	2.6	5.2	5.2	7.8	13.0	23.4	44.2	127.4				
1	16	260	2.6	2.6	2.6	5.2	5.2	7.8	13.0	23.4	44.2	127.4			
1	17	260	2.6	2.6	2.6	2.6	5.2	5.2	7.8	13.0	23.4	44.2	127.4		
1	18	260	2.6	2.6	2.6	2.6	2.6	5.2	5.2	7.8	13.0	23.4	44.2	127.4	239.2
1	19	0	2.6	2.6	2.6	2.6	2.6	2.6	5.2	5.2	7.8	13.0	23.4	44.2	114,4
1	20	0	2.6	2.6	2.6	2.6	2.6	2.6	2.6	5.2	5.2	7.8	13.0	23.4	72.8
1	21	0	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	5.2	5.2	7.8	13.0	52.0
1	22	0	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	5.2	5.2	7.8	41.6
1	23	0	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	5.2	5.2	36.4
1	24	0	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	5.2	33.8 22

Example of Calculations

จำนวนชั่วโมงหลังจากชั่วโมง ที่ 7 ของวันที่ 1	Cooling Load ของ Heat Gain 260 Watt ที่ เกิดขึ้นในแต่ละชั่วโมงหลังจากชั่วโมงที่ 7
	ของวันที่ 1
0	260 x 0.49 = 127.4 Watt
1	260 x 0.17 = 44.2 Watt
2	260 x 0.09 = 23.4 Watt
3	260 x 0.05 = 13.0 Watt
4	$260 \times 0.03 = 7.8 \text{ Watt}$
5	$260 \times 0.02 = 5.2 \text{ Watt}$
6	260 x 0.02 = 5.2 Watt
7	260 x 0.01 = 2.6 Watt


Plenum Heat Balance


Approximate Watt/Sq.m

Activity	Illumination	Watt/Sq.m
Activity	(lux, lumen/m²)	(Assume Eff. = 40 lu/Watt)
Warehouses, Homes,		
Theaters, Archives	150	3.75
Easy Office Work, Classes	250	6.25
Normal Office Work, PC Work, Study Library, Groceries, Show Rooms, Laboratories	500	12.5
Supermarkets, Mechanical Workshops, Office Landscapes	750	18.75
Normal Drawing Work, Detailed Mechanical Workshops, Operation Theatres	1,000	25
Detailed Drawing Work, Very Detailed Mechanical Works	1,500 - 2,000	37.5 - 50

Lighting Efficiency Compare

Wall Heat Gain

Solar Irradiance on W-Wall

d					
ตารางท	10:	Wall	Componen	t of Solaı	· Irradiance

LST AST H β φ E_{DN} θ E_D E_T Y E_d E_d+E_T E_T Hour Hour Degree Degree W/m^2 Degree W/m^2 W/m	The TVI To. Wall component of Solar Irradiance												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						I		r					
Hour Hour Degree Degree Oegree W/m² Degree W/m² W/m² W/m² W/m² W/m² W/m²	Standard	Solar			Azimuth		Incident			Ratio			
1 0.72 -169.2 -62.5 -156.5 0 100.6 0 0 0.48 0 0 2 1.72 -154.2 -54 -133.5 0 115.3 0 0 0.45 0 0 3 2.72 -139.2 -42.2 -120.1 0 129.8 0 0 0.45 0 0 4 3.72 -124.2 -29.1 -111.9 0 144.2 0 0 0.45 0 0 5 4.72 -109.2 -15.3 -106.4 0 157.7 0 0 0.45 0 0 6 5.72 -94.2 -1.2 -102.3 0 167.7 0 0 0.45 0 0 7 6.72 -99.2 13.1 -99.0 548.3 164.2 0 19.0 0.45 42.8 89 89 9 8.72 -49.2 42.1 -93.3	LST	AST	\boldsymbol{H}	β	ф	\boldsymbol{E}_{DN}	θ	E_D	\boldsymbol{E}_{r}	Y	E_d	$E_d + E_r$	\boldsymbol{E}_{t}
1 0.72 -169.2 -62.5 -156.5 0 100.6 0 0 0.48 0 0 2 1.72 -154.2 -54 -133.5 0 115.3 0 0 0.45 0 0 3 2.72 -139.2 -42.2 -120.1 0 129.8 0 0 0.45 0 0 4 3.72 -124.2 -29.1 -111.9 0 144.2 0 0 0.45 0 0 5 4.72 -109.2 -15.3 -106.4 0 157.7 0 0 0.45 0 0 6 5.72 -94.2 -1.2 -102.3 0 167.7 0 0 0.45 0 0 7 6.72 -79.2 13.1 -99.0 548.3 164.2 0 19.0 0.45 42.8 89 89 9 8.72 -49.2 42.1 -93.3	Hour	Hour	Degree	Degree	Degree	W/m^2	Degree	W/m^2	W/m^2		W/m^2	W/m^2	W/m ²
3 2.72 -139.2 -42.2 -120.1 0 129.8 0 0 0.45 0 0 4 3.72 -124.2 -29.1 -111.9 0 144.2 0 0 0.45 0 0 5 4.72 -109.2 -15.3 -106.4 0 157.7 0 0 0.45 0 0 6 5.72 -94.2 -1.2 -102.3 0 167.7 0 0 0.45 0 0 7 6.72 -99.2 13.1 -99.0 548.3 164.2 0 19.0 0.45 29.6 48.6 48. 8 7.72 -64.2 27.6 -96.1 792.7 151.8 0 46.2 0.45 42.8 89 89. 9 8.72 -49.2 42.1 -93.3 884.7 137.8 0 69.9 0.45 47.8 117.7 117. 10 9.72	1	0.72	-169.2	-62.5	-156.5	0	100.6	0	0	0.48	0	0	0
4 3.72 -124.2 -29.1 -111.9 0 144.2 0 0 0.45 0 0 5 4.72 -109.2 -15.3 -106.4 0 157.7 0 0 0.45 0 0 6 5.72 -94.2 -1.2 -102.3 0 167.7 0 0 0.45 0 0 7 6.72 -79.2 13.1 -99.0 548.3 164.2 0 19.0 0.45 29.6 48.6 48. 8 7.72 -64.2 27.6 -96.1 792.7 151.8 0 46.2 0.45 42.8 89 89 89 9 8.72 -49.2 42.1 -93.3 884.7 137.8 0 69.9 0.45 47.8 117.7 117. 10 9.72 -34.2 56.6 -90.3 928.5 123.4 0 88.7 0.45 50.1 138.8 138.	2	1.72	-154.2	-54	-133.5	0	115.3	0	0	0.45	0	0	0
5 4.72 -109.2 -15.3 -106.4 0 157.7 0 0 0.45 0 0 6 5.72 -94.2 -1.2 -102.3 0 167.7 0 0 0.45 0 0 7 6.72 -79.2 13.1 -99.0 548.3 164.2 0 19.0 0.45 29.6 48.6 48. 8 7.72 -64.2 27.6 -96.1 792.7 151.8 0 46.2 0.45 42.8 89 89. 9 8.72 -49.2 42.1 -93.3 884.7 137.8 0 69.9 0.45 47.8 117.7 117. 10 9.72 -34.2 56.6 -90.3 928.5 123.4 0 88.7 0.45 47.8 117.7 117. 10 9.72 -34.2 56.6 -90.3 928.5 123.4 0 88.7 0.45 50.1 138.8 138. <td>3</td> <td>2.72</td> <td>-139.2</td> <td>-42.2</td> <td>-120.1</td> <td>0</td> <td>129.8</td> <td>0</td> <td>0</td> <td>0.45</td> <td>0</td> <td>0</td> <td>0</td>	3	2.72	-139.2	-42.2	-120.1	0	129.8	0	0	0.45	0	0	0
6 5.72	4	3.72	-124.2	-29.1	-111.9	0	144.2	0	0	0.45	0	0	0
7 6.72 -79.2 13.1 -99.0 548.3 164.2 0 19.0 0.45 29.6 48.6 48. 8 7.72 -64.2 27.6 -96.1 792.7 151.8 0 46.2 0.45 42.8 89 89 9 8.72 -49.2 42.1 -93.3 884.7 137.8 0 69.9 0.45 47.8 117.7 117. 10 9.72 -34.2 56.6 -90.3 928.5 123.4 0 88.7 0.45 50.1 138.8 138. 11 10.72 -19.2 71.2 -85.7 950.3 108.7 0 101.4 0.45 50.1 138.8 138. 12 11.72 -4.2 85.4 -62.7 958.6 94.1 0 107.1 0.52 59.9 166.9 166. 13 12.72 10.8 79.2 79.8 956.3 79.4 176.2 105.4 0	5		-109.2	-15.3	-106.4	0	157.7	0	0	0.45	0	0	0
8 7.72 -64.2 27.6 -96.1 792.7 151.8 0 46.2 0.45 42.8 89 89. 9 8.72 -49.2 42.1 -93.3 884.7 137.8 0 69.9 0.45 47.8 117.7 117. 10 9.72 -34.2 56.6 -90.3 928.5 123.4 0 88.7 0.45 50.1 138.8 138. 11 10.72 -19.2 71.2 -85.7 950.3 108.7 0 101.4 0.45 51.3 152.7 152. 12 11.72 -4.2 85.4 -62.7 958.6 94.1 0 107.1 0.52 59.9 166.9 166. 13 12.72 10.8 79.2 79.8 956.3 79.4 176.2 105.4 0.64 73.6 179.0 355. 14 13.72 25.8 64.7 88.1 942.5 64.7 402.5 96.5 0.79 89.8 186.3 588. 15 14.72 40.8 50	6	5.72	-94.2	-1.2	-102.3	0	167.7	0	0	0.45	0		0
9 8.72	7	6.72	-79.2	13.1	-99.0	548.3	164.2	0	19.0	0.45	29.6	48.6	48.6
10 9.72 -34.2 56.6 -90.3 928.5 123.4 0 88.7 0.45 50.1 138.8 138. 11 10.72 -19.2 71.2 -85.7 950.3 108.7 0 101.4 0.45 51.3 152.7 152 12 11.72 -4.2 85.4 -62.7 958.6 94.1 0 107.1 0.52 59.9 166.9 166. 13 12.72 10.8 79.2 79.8 956.3 79.4 176.2 105.4 0.64 73.6 179.0 355. 14 13.72 25.8 64.7 88.1 942.5 64.7 402.5 96.5 0.79 89.8 186.3 588. 15 14.72 40.8 50.1 91.7 912.6 50.2 584.7 81 0.96 105 186 770. 16 15.72 55.8 35.6 94.6 852.5 35.8 691.1 59.8 1.11 113.5 173.4 864 17 16.72 70.8 <t< td=""><td>8</td><td></td><td>-64.2</td><td>27.6</td><td>-96.1</td><td>792.7</td><td>151.8</td><td>0</td><td>46.2</td><td>0.45</td><td>42.8</td><td>89</td><td>89.0</td></t<>	8		-64.2	27.6	-96.1	792.7	151.8	0	46.2	0.45	42.8	89	89.0
11 10.72 -19.2 71.2 -85.7 950.3 108.7 0 101.4 0.45 51.3 152.7 152 12 11.72 -4.2 85.4 -62.7 958.6 94.1 0 107.1 0.52 59.9 166.9 166. 13 12.72 10.8 79.2 79.8 956.3 79.4 176.2 105.4 0.64 73.6 179.0 355. 14 13.72 25.8 64.7 88.1 942.5 64.7 402.5 96.5 0.79 89.8 186.3 588. 15 14.72 40.8 50.1 91.7 912.6 50.2 584.7 81 0.96 105 186 770. 16 15.72 55.8 35.6 94.6 852.5 35.8 691.1 59.8 1.11 113.5 173.4 864 17 16.72 70.8 21.1 97.3 716.5 22.3 663 34.4 1.22 105.1 139.5 802 18 17.72 85.8 <t< td=""><td>9</td><td>8.72</td><td>-49.2</td><td>42.1</td><td>-93.3</td><td>884.7</td><td>137.8</td><td>0</td><td>69.9</td><td>0.45</td><td>47.8</td><td>117.7</td><td>117.7</td></t<>	9	8.72	-49.2	42.1	-93.3	884.7	137.8	0	69.9	0.45	47.8	117.7	117.7
12 11.72 -4.2 85.4 -62.7 958.6 94.1 0 107.1 0.52 59.9 166.9 166.9 13 12.72 10.8 79.2 79.8 956.3 79.4 176.2 105.4 0.64 73.6 179.0 355. 14 13.72 25.8 64.7 88.1 942.5 64.7 402.5 96.5 0.79 89.8 186.3 588. 15 14.72 40.8 50.1 91.7 912.6 50.2 584.7 81 0.96 105 186 770. 16 15.72 55.8 35.6 94.6 852.5 35.8 691.1 59.8 1.11 113.5 173.4 864. 17 16.72 70.8 21.1 97.3 716.5 22.3 663 34.4 1.22 105.1 139.5 802. 18 17.72 85.8 6.7 100.4 277.1 12.3 270.7 6.6 1.28 42.4 49 319. 19 18.72 100.8 <	10	9.72	-34.2	56.6	-90.3	928.5	123.4	0	88.7	0.45	50.1	138.8	138.8
13 12.72 10.8 79.2 79.8 956.3 79.4 176.2 105.4 0.64 73.6 179.0 355. 14 13.72 25.8 64.7 88.1 942.5 64.7 402.5 96.5 0.79 89.8 186.3 588. 15 14.72 40.8 50.1 91.7 912.6 50.2 584.7 81 0.96 105 186 770. 16 15.72 55.8 35.6 94.6 852.5 35.8 691.1 59.8 1.11 113.5 173.4 864. 17 16.72 70.8 21.1 97.3 716.5 22.3 663 34.4 1.22 105.1 139.5 802. 18 17.72 85.8 6.7 100.4 277.1 12.3 270.7 6.6 1.28 42.4 49 319. 19 18.72 100.8 -7.5 104.0 0 15.8 0 0 1.26 0 0 20 19.72 115.8 -21.5 108.6		10.72	-19.2	71.2		950.3	108.7	0	101.4	0.45	51.3	152.7	152.7
14 13.72 25.8 64.7 88.1 942.5 64.7 402.5 96.5 0.79 89.8 186.3 588. 15 14.72 40.8 50.1 91.7 912.6 50.2 584.7 81 0.96 105 186 770. 16 15.72 55.8 35.6 94.6 852.5 35.8 691.1 59.8 1.11 113.5 173.4 864. 17 16.72 70.8 21.1 97.3 716.5 22.3 663 34.4 1.22 105.1 139.5 802. 18 17.72 85.8 6.7 100.4 277.1 12.3 270.7 6.6 1.28 42.4 49 319. 19 18.72 100.8 -7.5 104.0 0 15.8 0 0 1.26 0 0 20 19.72 115.8 -21.5 108.6 0 28.2 0 0 1.18 0 0 21 20.72 130.8 -35.1 115.1 0 42.2 0 0 1.05 0 0 22 21.72 145.8 -47.7 125.2 0 56.6 0 <td></td> <td>11.72</td> <td>-4.2</td> <td>85.4</td> <td>-62.7</td> <td>958.6</td> <td>94.1</td> <td>0</td> <td>107.1</td> <td>0.52</td> <td>59.9</td> <td>166.9</td> <td>166.9</td>		11.72	-4.2	85.4	-62.7	958.6	94.1	0	107.1	0.52	59.9	166.9	166.9
15 14.72 40.8 50.1 91.7 912.6 50.2 584.7 81 0.96 105 186 770. 16 15.72 55.8 35.6 94.6 852.5 35.8 691.1 59.8 1.11 113.5 173.4 864. 17 16.72 70.8 21.1 97.3 716.5 22.3 663 34.4 1.22 105.1 139.5 802. 18 17.72 85.8 6.7 100.4 277.1 12.3 270.7 6.6 1.28 42.4 49 319. 19 18.72 100.8 -7.5 104.0 0 15.8 0 0 1.26 0 0 20 19.72 115.8 -21.5 108.6 0 28.2 0 0 1.18 0 0 21 20.72 130.8 -35.1 115.1 0 42.2 0 0 1.05 0 0 22 21.72 145.8 -47.7 125.2 0 56.6 0 0 0.89 0 0 23 22.72 160.8 -58.3 142.2 0 71.3 0 0 0.58 <td>13</td> <td>12.72</td> <td>10.8</td> <td>79.2</td> <td>79.8</td> <td>956.3</td> <td>79.4</td> <td>176.2</td> <td>105.4</td> <td>0.64</td> <td>73.6</td> <td>179.0</td> <td>355.2</td>	13	12.72	10.8	79.2	79.8	956.3	79.4	176.2	105.4	0.64	73.6	179.0	355.2
16 15.72 55.8 35.6 94.6 852.5 35.8 691.1 59.8 1.11 113.5 173.4 864 17 16.72 70.8 21.1 97.3 716.5 22.3 663 34.4 1.22 105.1 139.5 802 18 17.72 85.8 6.7 100.4 277.1 12.3 270.7 6.6 1.28 42.4 49 319 19 18.72 100.8 -7.5 104.0 0 15.8 0 0 1.26 0 0 20 19.72 115.8 -21.5 108.6 0 28.2 0 0 1.18 0 0 21 20.72 130.8 -35.1 115.1 0 42.2 0 0 1.05 0 0 22 21.72 145.8 -47.7 125.2 0 56.6 0 0 0.89 0 0 23 22.72 160.8 -58.3 142.2 0 71.3 0 0 0.58 0 0 24 23.72 175.8 -64.3 170.6 0 85.9 0 0 0.58 0 0	14	13.72	25.8	64.7	88.1	942.5	64.7	402.5	96.5	0.79	89.8	186.3	588.8
17 16.72 70.8 21.1 97.3 716.5 22.3 663 34.4 1.22 105.1 139.5 802 18 17.72 85.8 6.7 100.4 277.1 12.3 270.7 6.6 1.28 42.4 49 319 19 18.72 100.8 -7.5 104.0 0 15.8 0 0 1.26 0 0 20 19.72 115.8 -21.5 108.6 0 28.2 0 0 1.18 0 0 21 20.72 130.8 -35.1 115.1 0 42.2 0 0 1.05 0 0 22 21.72 145.8 -47.7 125.2 0 56.6 0 0 0.89 0 0 23 22.72 160.8 -58.3 142.2 0 71.3 0 0 0.58 0 0 24 23.72 175.8 -64.3 170.6 0 85.9 0 0 0.58 0 0	15	14.72	40.8	50.1	91.7	912.6	50.2	584.7	81	0.96	105	186	770.6
18 17.72 85.8 6.7 100.4 277.1 12.3 270.7 6.6 1.28 42.4 49 319. 19 18.72 100.8 -7.5 104.0 0 15.8 0 0 1.26 0 0 20 19.72 115.8 -21.5 108.6 0 28.2 0 0 1.18 0 0 21 20.72 130.8 -35.1 115.1 0 42.2 0 0 1.05 0 0 22 21.72 145.8 -47.7 125.2 0 56.6 0 0 0.89 0 0 23 22.72 160.8 -58.3 142.2 0 71.3 0 0 0.72 0 0 24 23.72 175.8 -64.3 170.6 0 85.9 0 0 0.58 0 0	16	15.72	55.8	35.6	94.6	852.5	35.8	691.1	59.8	1.11	113.5	173.4	864.4
19 18.72 100.8 -7.5 104.0 0 15.8 0 0 1.26 0 0 20 19.72 115.8 -21.5 108.6 0 28.2 0 0 1.18 0 0 21 20.72 130.8 -35.1 115.1 0 42.2 0 0 1.05 0 0 22 21.72 145.8 -47.7 125.2 0 56.6 0 0 0.89 0 0 23 22.72 160.8 -58.3 142.2 0 71.3 0 0 0.72 0 0 24 23.72 175.8 -64.3 170.6 0 85.9 0 0 0.58 0 0	17	16.72	70.8	21.1	97.3	716.5	22.3	663	34.4	1.22	105.1	139.5	802.5
20 19.72 115.8 -21.5 108.6 0 28.2 0 0 1.18 0 0 21 20.72 130.8 -35.1 115.1 0 42.2 0 0 1.05 0 0 22 21.72 145.8 -47.7 125.2 0 56.6 0 0 0.89 0 0 23 22.72 160.8 -58.3 142.2 0 71.3 0 0 0.72 0 0 24 23.72 175.8 -64.3 170.6 0 85.9 0 0 0.58 0 0	18	17.72	85.8	6.7	100.4	277.1	12.3	270.7	6.6	1.28	42.4	49	319.7
21 20.72 130.8 -35.1 115.1 0 42.2 0 0 1.05 0 0 22 21.72 145.8 -47.7 125.2 0 56.6 0 0 0.89 0 0 23 22.72 160.8 -58.3 142.2 0 71.3 0 0 0.72 0 0 24 23.72 175.8 -64.3 170.6 0 85.9 0 0 0.58 0 0 Column Number	19	18.72	100.8	-7.5	104.0	0	15.8	0	0	1.26	0	0	0
22 21.72 145.8 -47.7 125.2 0 56.6 0 0 0.89 0 0 23 22.72 160.8 -58.3 142.2 0 71.3 0 0 0.72 0 0 24 23.72 175.8 -64.3 170.6 0 85.9 0 0 0.58 0 0 Column Number	20	19.72	115.8	-21.5	108.6	0	28.2	0	0	1.18	0	0	0
23 22.72 160.8 -58.3 142.2 0 71.3 0 0 0.72 0 0 24 23.72 175.8 -64.3 170.6 0 85.9 0 0 0.58 0 0 Column Number	21	20.72	130.8	-35.1	115.1	0	42.2	0	0	1.05	0	0	0
24 23.72 175.8 -64.3 170.6 0 85.9 0 0 0.58 0 0 Column Number	22	21.72	145.8	-47.7	125.2	0	56.6	0	0	0.89	0	0	0
Column Number	23	22.72	160.8	-58.3	142.2	0	71.3	0	0	0.72	0	0	0
	24	23.72	175.8	-64.3	170.6	0	85.9	0	0	0.58	0	0	0
1 2 3 4 5 6 7 8 9 10 11 12 13													
	1	2	3	4	5	6	7	8	9	10	11	12	13

Solar Angle

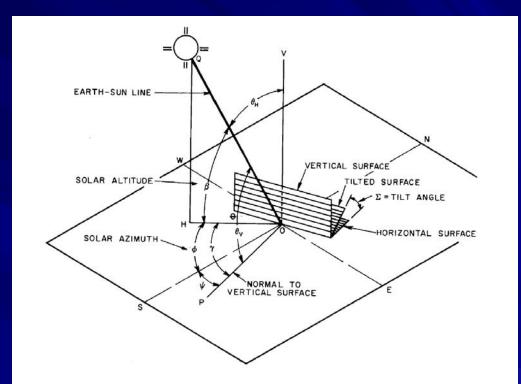


Fig. 10 Solar Angles for Vertical and Horizontal Surfaces

Table 9 Surface Orientations and Azimuths, Measured from South

Orientation	N	NE	E	SE	S	SW	W	NW
Surface azimuth ψ	180°	-135°	−90°	-45°	0	45°	90°	135°

Solar Equations

Solar Angles

All angles are in degrees. The solar azimuth ϕ and the surface azimuth ψ are measured in degrees from south; angles to the east of south are negative, and angles to the west of south are positive. Calculate solar altitude, azimuth, and surface incident angles as follows:

Apparent solar time AST, in decimal hours:

$$AST = LST + ET/60 + (LSM - LON)/15$$

Hour angle *H*, degrees:

H = 15(hours of time from local solar noon) = 15(AST – 12)

Solar altitude β:

$$\sin \beta = \cos L \cos \delta \cos H + \sin L \sin \delta$$

Solar azimuth ϕ :

$$\cos \phi = (\sin \beta \sin L - \sin \delta)/(\cos \beta \cos L)$$

Surface-solar azimuth γ :

$$\gamma = \phi - \psi$$

Incident angle θ :

$$\cos \theta = \cos \beta \cos \gamma \sin \Sigma + \sin \beta \cos \Sigma$$

where

ET = equation of time, decimal minutes

L = latitude

LON = local longitude, decimal degrees of arc

LSM = local standard time meridian, decimal degrees of arc

= 60° for Atlantic Standard Time

= 75° for Eastern Standard Time

= 90° for Central Standard Time

= 105° for Mountain Standard Time

= 120° for Pacific Standard Time

= 135° for Alaska Standard Time
 = 150° for Hawaii-Aleutian Standard Time

LST = local standard time, decimal hours

 δ = solar declination, °

 ψ = surface azimuth, °

 $\Sigma = \text{surface tilt from horizontal, horizontal} = 0^{\circ}$

Values of ET and δ are given in <u>Table 7 of Chapter 31</u> for the 21st day of each month.

Direct, Diffuse, and Total Solar Irradiance

Direct normal irradiance E_{DN}

If
$$\beta > 0$$
 $E_{DN} = \left[\frac{A}{\exp(B/\sin\beta)}\right]$ CN

Otherwise, $E_{DN} = 0$

Surface direct irradiance E_D

If
$$\cos \theta > 0$$
 $E_D = E_{DN} \cos \theta$

Otherwise,
$$E_D = 0$$

Ratio Y of sky diffuse on vertical surface to sky diffuse on horizontal surface

If
$$\cos \theta > -0.2$$
 $Y = 0.55 + 0.437 \cos \theta + 0.313 \cos^2 \theta$

Otherwise,
$$Y = 0.45$$

Diffuse irradiance E_d

Vertical surfaces $E_d = CYE_{DN}$

Surfaces other than vertical $E_d = CE_{DN}(1 + \cos \Sigma)/2$

Ground-reflected irradiance $E_r = E_{DN}(C + \sin \beta)\rho_{\sigma}(1 - \cos \Sigma)/2$

Total surface irradiance $E_t = E_D + E_d + E_v$

where

A = apparent solar constant

B = atmospheric extinction coefficient

C = sky diffuse factor

CN = clearness number multiplier for clear/dry or hazy/humid locations. See Figure 5 in Chapter 33 of the 2003 ASHRAE Handbook—HVAC Applications for CN values.

 $E_d = \text{diffuse sky irradiance}$

 E_r = diffuse ground-reflected irradiance

 ρ_{σ} = ground reflectivity

Values of A, B, and C are given in <u>Table 7 of Chapter 31</u> for the 21st day of each month. Values of ground reflectivity ρ_g are given in <u>Table 10 of Chapter 31</u>.

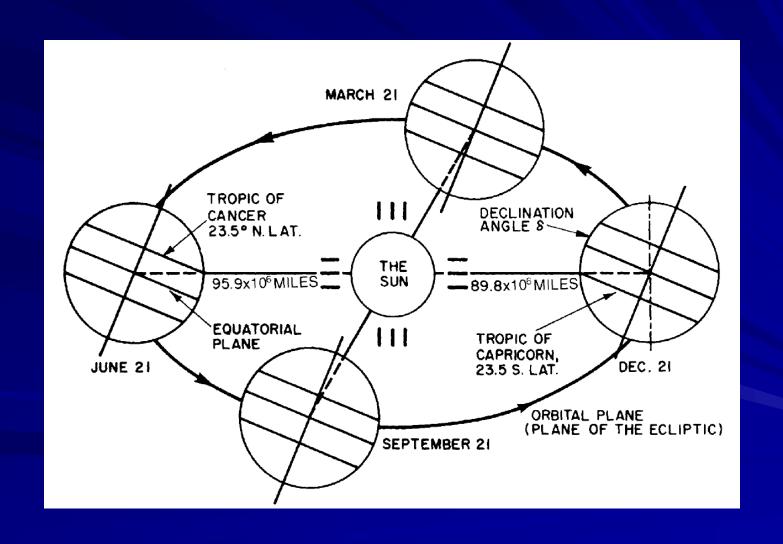
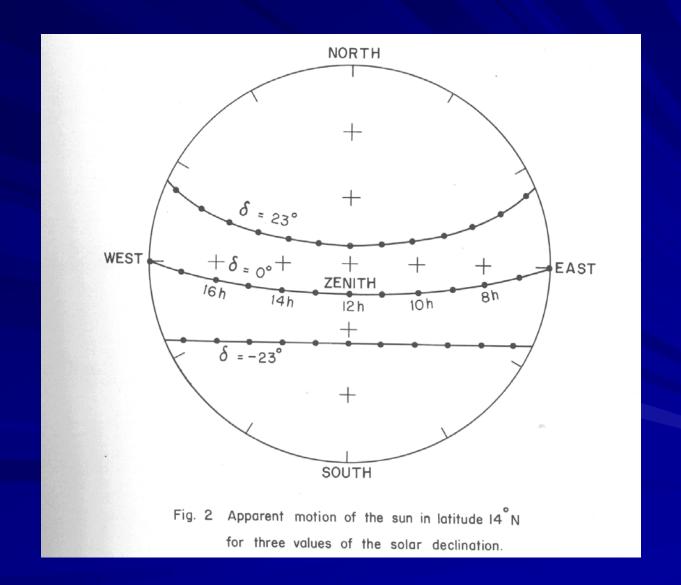

Solar Irradiance Data

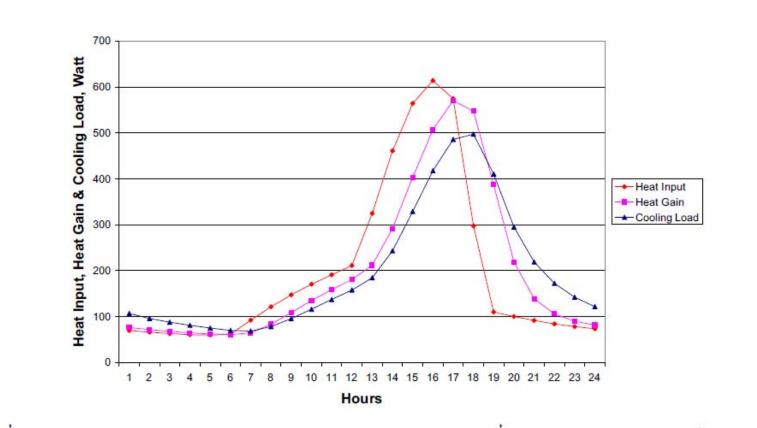
Table 7 Extraterrestrial Solar Irradiance and Related Data


		Equation	Declina-	A	В	C
	I_o , W/m ²	of Time, min.	tion, degrees	W/m^2		isionless tios)
Jan	1416	-11.2	-20.0	1202	0.141	0.103
Feb	1401	-13.9	-10.8	1187	0.142	0.104
Mar	1381	-7.5	0.0	1164	0.149	0.109
Apr	1356	1.1	11.6	1130	0.164	0.120
May	1336	3.3	20.0	1106	0.177	0.130
June	1336	-1.4	23.45	1092	0.185	0.137
July	1336	-6.2	20.6	1093	0.186	0.138
Aug	1338	-2.4	12.3	1107	0.182	0.134
Sep	1359	7.5	0.0	1136	0.165	0.121
Oct	1380	15.4	-10.5	1166	0.152	0.111
Nov	1405	13.8	-19.8	1190	0.144	0.106
Dec	1417	1.6	-23.45	1204	0.141	0.103

Note: Data are for 21st day of each month during the base year of 1964.

Earth Orbit

Declination



W-Wall Cooling Load

d		
ตารางท่	11: Wall Component of Cooling Loa	ıd

Local	Total	Outside	Sol-air	Inside	Heat	Wall						
Standard	Surface	Temp.	Temp.	Temp.	Input	CTS	Total	Convective	Radiant	RTS	Radiant	Total
Time	Irradiance					Wall	100%	37%	63%	Zone	Cooling	Cooling
LST	\boldsymbol{E}_{t}	t_o	t_e	t_{rc}	q_i	No.8				Type 4	Load	Load
Hour	W/m^2	°C	°C	°C	Watt	%	Watt	Watt	Watt	%	Watt	Watt
1	0	30.5	30.5	24	69.7	11	76	28.1	47.9	41	78.6	106.7
2	0	30.2	30.2	24	65.9	50	71.7	26.5	45.2	20	69.2	95.8
3	0	29.9	29.9	24	62.9	26	67.8	25.1	42.7	12	62.5	87.6
4	0	29.7	29.7	24	60.6	9	64.5	23.9	40.6	8	57.1	81
5	0	29.6	29.6	24	59.9	3	62	22.9	39.1	5	52.1	75
6	0	29.7	29.7	24	61.4	1	60.8	22.5	38.3	4	47.5	69.9
7	48.6	30.1	32.6	24	92.2	0	64.4	23.8	40.6	3	44.6	68.4
8	89	30.7	35.4	24	121.4	0	83.2	30.8	52.4	2	47.4	78.2
9	117.7	31.7	37.8	24	147.3	0	108.8	40.3	68.6	1	55.4	95.6
10	138.8	32.7	39.9	24	170.4	0	134.7	49.8	84.9	1	66.3	116.1
11	152.7	33.9	41.9	24	191	0	158.8	58.8	100	1	78.4	137.2
12	166.9	35.1	43.7	24	211.1	0	180.8	66.9	113.9	1	90.8	157.7
13	355.2	35.9	54.4	24	324.8	0	211.9	78.4	133.5	1	106	184.4
14	588.8	36.5	67.1	24	460.7	0	291.7	107.9	183.8	0	135.2	243.1
15	770.6	36.7	76.8	24	564	0	403.3	149.2	254.1	0	179.6	328.8
16	864.4	36.5	81.4	24	613.9	0	506.8	187.5	319.3	0	230.2	417.7
17	802.5	36	77.7	24	574.2	0	570.1	210.9	359.1	0	274.6	485.5
18	319.7	35.2	51.8	24	297.5	0	547.2	202.5	344.8	0	294.6	497.1
19	0	34.3	34.3	24	109.9	0	386.9	143.1	243.7	0	267.3	410.5
20	0	33.4	33.4	24	100.1	0	219.1	81	138	0	213.9	295
21	0	32.6	32.6	24	91.7	0	138.8	51.4	87.5	0	167.3	218.7
22	0	31.9	31.9	24	84.1	0	105.7	39.1	66.6	0	133.3	172.4
23	0	31.3	31.3	24	78.1	0	89.8	33.2	56.6	0	109	142.3
24	0	30.9	30.9	24	73.5	0	81.4	30.1	51.3	0	91.5	121.6
Column Number												
1	2	3	4	5	6	7	8	9	10	11	12	13

W-Wall Time-delay Effect

รูปที่ 7: Time-delay Effect จาก Wall CTS และ Nonsolar RTS Values ที่มีต่อ Heat Input ของผนังด้านตะวันตก

Sol-Air Temperature

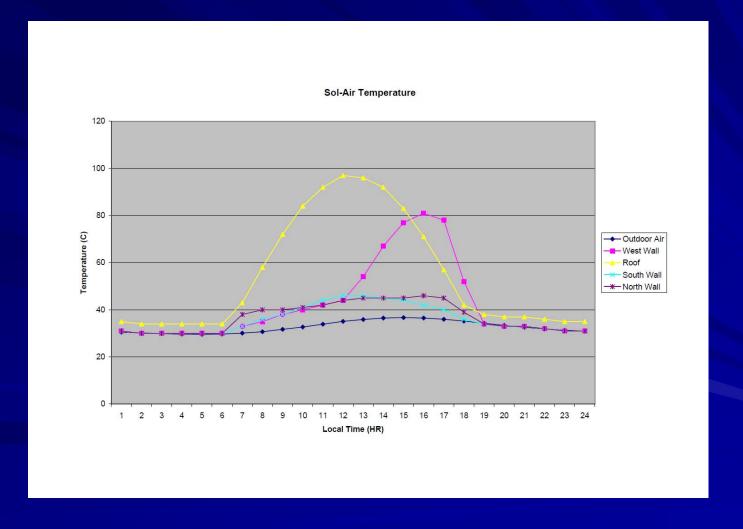
$$t_e = t_o + \frac{\alpha E_t}{h_o} - \frac{\varepsilon \Delta R}{h_o}$$

where

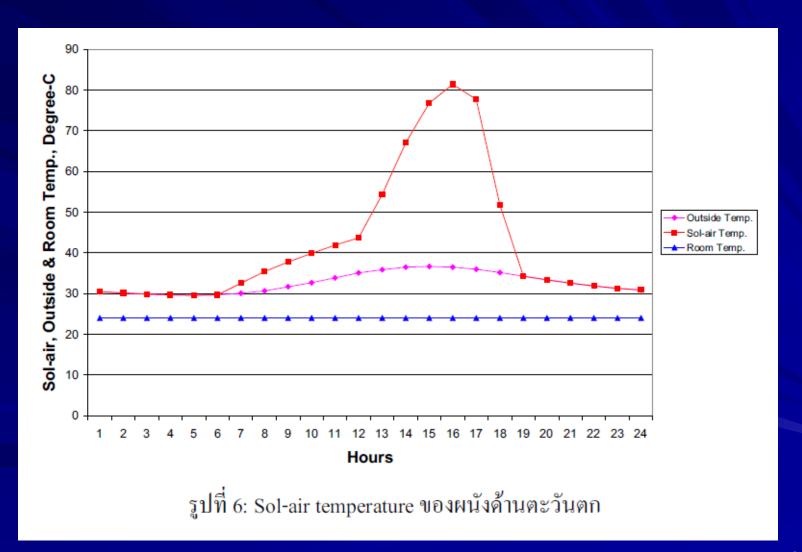
 α = absorptance of surface for solar radiation

 E_t = total solar radiation incident on surface, W/(m²·K)

 h_o = coefficient of heat transfer by long-wave radiation and convection at outer surface, W/(m²·K)


 t_o = outdoor air temperature, °C

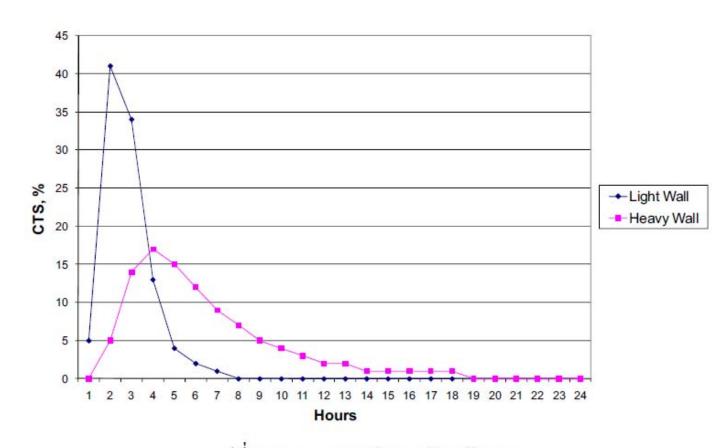
 t_s = surface temperature, °C


 ε = hemispherical emittance of surface

 ΔR = difference between long-wave radiation incident on surface from sky and surroundings and radiation emitted by blackbody at outdoor air temperature, W/m²

Sol-Air Temperature

Sol-air Temperature



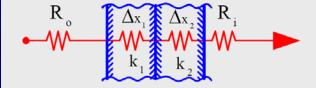
Wall CTS

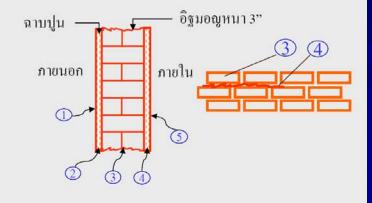
ตารางที่ 1: Wall Conduction Time Series (CTS)

		ALLS	S	STUD V	VALLS	S		EIFS					В	RICK	WALI	LS					
	Wall Number =	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
-	U-Factor, W/(m2.K)	0.428	0.429	0.428	0.419	0.417	0.406	0.413	0.668	0.305	0.524	0.571	0.377	0.283	0.581	0.348	0.628	0.702	0.514	0.581	0.389
١	Total R	2.3	2.3	2.3	2.4	2.4	2.5	2.4	1.5	3.3	1.9		2.7	3.5	1.7	2.9	1.6	1.4	1.9	1.7	2.6
-	Mass, kg/m ²	31.0	20.9	80.0	25.5	84.6	25.6	66.7	36.6	38.3	130.9	214.1	214.7	215.8	290.6	304.0	371.7	391.5	469.3	892.2	665.1
-	Thermal Capacity,	30.7	20.4	67.5	24.5	73.6	32.7	61.3	36.7	38.8	120.6	177.8	177.8	177.8	239.1	253.5	320.9	312.7	388.4	784.9	580.5
-	kJ/(m ² .K)																				
	Hour								Wal	l Cond	uction	Time S	eries(C	CTS)							
-	0	18	25	8	19	6	7	5	11	2	1	0	0	0	1	2	2	1	3	4	3
-	1	58	57	45	59	42	42	41	50	25	2	5	4	1	1	2	2	1	3	4	3
	2	20	15	32	18	33	33	34	26	31	6		13	7	2	2		3		4	3
	3	4	3	11	3	13	13	13	9	20	9	- ,	17	12	5			6		4	4
-	4	0	0	3	1	4	4	4	3	11	9		15	13	8	-	-	7		4	4
-	5	0	0	1 0	0	1	1	2	1	5	9 8	12	12	13 11	9			8		4	4
-	0	0	0	0	0	1	0	0	0	2	8	7	7	9	9		6	8	-	4	5
-	/	0	0	0	0	0	0	0	0	1	6		5	7	8	7	7	8		4	5
-	9	0	0	0	0	0	0	0	0	0	6	4	4	6	7	7	6	7	5	4	5
-	10	0	0	0	0	0	0	0	0	0	5	3	3	5	7	6		6	_	4	5
-	11	0	0	0	0	0	0	0	0	0	5	2	2	4	6		6	6	-	5	5
-	12	0	0	0	0	0	0	0	0	0	4	2	2	3	5	5	5	5	5	5	5
-	13	0	0	0	0	0	0	0	0	0	4	1	2	2	4	5	5	4	5	5	5
-	14	0	0	0	0	0	0	0	0	0	3	1	2	2	4	5	5	4	5	5	5
-	15	0	0	0	0	0	0	0	0	0	3	1	1	1	3	4	4	3	5	4	4
-	16	0	0	0	0	0	0	0	0	0	3	1	1	1	3	4	4	3		4	4
-	17	0	0	0	0	0	0	0	0	0	2	1	1	1	2	3	4	3		4	4
-	18	0	0	0	0	0	0	0	0	0	2	0	0		2	3	3	2		4	4
	19	0	0	0	0	0	0	0	0	0	2	0	0		2	3	3	2		4	4
	20	0	0	0	0	0	0	0	0	0	2	0	0	-	1	3	3	2		4	4
-	21	0	0	0	0	0	0	0	0	0	1	0	0		1	2			4	4	4
1	22 23	0	0	0	0	0	0	0	0	0	1	0	0		1	2	2	1	4	4	3
ŀ	Total Percentage	100	100	100	100	100	100	100		100	100	100	100	_	100		100	100	100	100	100
L	10tal Percentage	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

Wall CTS

รูปที่ 1: CTS ของผนังบางกับผนังหนา




$$U = \frac{1}{R_T} = \frac{1}{\text{ความต้านทานความร้อนรวม}}$$

$$R_T = R_0 + \frac{\Delta x_1}{k_1} + \frac{\Delta x_2}{k_2} + ... + R_i$$

 $\Delta x =$ ความหนาของวัสคุ

k₁ = สัมประสิทธิ์การนำความร้อนของวัสดุ

- 1) OUTSIDE AIR FILM $R_1 = 0.17$
- 2) ฉาบปูน 0.5" $R_2 = 0.5/5 = 0.1$
- 3) \hat{g}_{3} g_{3} g_{3}
- 4) ฉาบปูน 0.5" $R_4 = 0.5/5 = 0.1$
- 5) INSIDE AIR FILM $R_5 = 0.68$

$$R_{\rm T} = 1.65$$

$$U = \frac{1}{R_T} = \frac{1}{1.65} = 0.61$$

Film Coefficient of Air

Table 5-12 Surface Conductances and Resistances

(Table 1, Chapter 24, 1997 ASHRAE Handbook—Fundamentals)

			Sur	face E	mittan	ce, ε	
Position of	Direction of	refle	on- ective 0.90	ε=3	Refle	ective ε =	0.05
Surface	Heat Flow	h _i	R	h _i	R	h _i	R
STILL AIR				4			
Horizontal	Upward	1.63	0.61	0.91	1.10	0.76	1.32
Sloping—45°	Upward	1.60	0.62	0.88	1.14	0.73	1.37
Vertical	Horizontal	1.46	0.68	0.74	1.35	0.59	1.70
Sloping—45°	Downward	1.32	0.76	0.60	1.67	0.45	2.22
Horizontal	Downward	1.08	0.92	0.37	2.70	0.22	4.55
MOVING AIR (Any	position)	h _o	R				
15-mph Wind	Any	6.00	0.17		****		
(for winter)							
7.5-mph Wind	Any	4.00	0.25				
(for summer)							

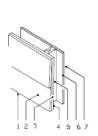
Air Gap

Table 5-14 Thermal Resistances of Plane Airspaces (Table 3, Chapter 24, 1997 ASHRAE Handbook—Fundamentals)

		Air S	pace		0.5-i	n. Air Sp	ace ^c				in. Air Sp		
Position of	Direction of	Mean	Temp.	1	Effective	Emittan	ce E. d,e		, , , , , ,	Effective	Emittan	ce ε _{eff} d,e	
Air Space	Heat Flow	Temp.d, oF	Diff.d, °F	0.03	Effective 0.05	0.2	0.5	0.82	0.03	0.05	0.2	0.5	0.82
Trit Dimes		90	10	2.13	2.03	1.51	0.99	0.73	2.34	2.22	1.61	1.04	0.75
	•	50	30	1.62	1.57	1.29	0.96	0.75	1.71	1.66	1.35	0.99	0.77
		. 50	10	2.13	2.05	1.60	1.11	0.84	2.30	2.21	1.70	1.16	0.87
Horiz.	Up	, 0	20	1.73	1.70	1.45	1.12	0.91	1.83	1.79	1.52	1.16	0.93
TOTIZ.	ОР	ő	10	2.10	2.04	1.70	1.27	1.00	2.23	2.16	1.78	1.31	1.02
		-50	20	1.69	1.66	1.49	1.23	1.04	1.77	1.74	1.55	1.27	1.07
		-50	10	2.04	2.00	1.75	1.40	1.16	2.16	2.11	1.84	1.46	1.20
		90	10	2.44	2.31	1.65	1.06	0.76	2.96	2.78	1.88	1.15	0.81
	1	90 50 50	30	2.06	1.98	1.56	1.10	0.83	1.99	1.92	1.52	1.08	0.82
		50	10	2.55	2.44	1.83	1.22	0.90	2.90	2.75	2.00	1.29	0.94
45°	Up /	0	20	2.20	2.14	1.76	1.30	1.02	2.13	2.07	1.72	1.28	1.00
Slope	OP /	0	10	2.63	2.54	2.03	1.44	1.10	2.72	2.62	2.08	1.47	1.12
	,	-50	20	2.08	2.04	1.78	1.42	1.17	2.05	2.01	1.76	1.41	1.16
		-50	10	2.62	2.56	2.17	1.66	1.33	2.53	2.47	2.10	1.62	1.30
		90	10	2.47	2.34	1.67	1.06	0.77	3.50	3.24	2.08	1.22	0.84
		50	30	2.57	2.46	1.84	1.23	0.90	2.91	2.77	2.01	1.30	0.94
		50	10	2.66	2.54	1.88	1.24	0.91	3.70	3.46	2.35	1.43	1.01
Vertical	Horiz.	0	20	2.82	2.72	2.14	1.50	1.13	3.14	3.02	2.32	1.58	1.18
ertical	HOHZ.	ő	10	2.93	2.82	2.20	1.53	1.15	3.77	3.59	2.64	1.73	1.26
		-50	20	2.90	2.82	2.35	1.76	1.39	2.90	2.83	2.36	1.77	1.39
		-50	10	3.20	3.10	2.54	1.87	1.46	3.72	3.60	2.87	2.04	1.56
		90	10	2.48	2.34	1.67	1.06	0.77	3.53	3.27	2.10	1.22	0.84
		50	30	2.64	2.52	1.87	1.24	0.91	3.43	3.23	2.24	1.39	0.99
		50	10	2.67	2.55	1.89	1.25	0.92	3.81	3.57	2.40	1.45	1.02
45°	Down	0	20	2.91	2.80	2.19	1.52	1.15	3.75	3.57	2.63	1.72	1.26
Slope	Down 1	0	10	2.94	2.83	2.21	1.53	1.15	4.12	3.91	2.81	1.80	1.30
	•	-50	20	3.16	3.07	2.52	1.86	1.45	3.78	3.65	2.90	2.05	1.57
		50	10	3.26	3.16	2.58	1.89	1.47	4.35	4.18	3.22	2.21	1.66
		90	10	2.48	2.34	1.67	1.06	0.77	3.55	3.29	2.10	1.22	0.85
	. 1	50	30	2.66	2.54	1.88	1.24	0.91	3.77	3.52	2.38	1.44	1.02
	.	50	10	2.67	2.55	1.89	1.25	0.92	3.84	3.59	2.41	1.45	1.02
Horiz.	Down	0	20	2.94	2.83	2.20	1.53	1.15	4.18	3.96	2.83	1.81	1.30
HOULE.	1	Ö	10	2.96	2.85	2.22	1.53	1.16	4.25	4.02	2.87	1.82	1.31
	4	-50	20	3.25	3.15	2.58	1.89	1.47	4.60	4.41	3.36	2.28	1.69
		-50	10	3.28	3.18	2.60	1.90	1.47	4.71	4.51	3.42	2.30	1.71
			Space		1.5-	in. Air S _l	pacec				in. Air S		
		90	10	2.55	2.41	8. 1.71	1.08	0.77	2.84	2.66	1.83	1.13	0.80
1		50	30	1.87	1.81	1.45	1.04	0.80	2.09	2.01	1.58	1.10	0.84
		50	10	2.50	2.40	1.81	1.21	0.89	2.80	2.66	1.95	1.28	0.93
Horiz.	Up	0	20	2.01	1.95	1.63	1.23	0.97	2.25	2.18	1.79	1.32	1.03
Hoffz.	Op	ŏ	10	2.43	2.35	1.90	1.38	1.06	2.71	2.62	2.07	1.47	1.12
		-50	20	1.94	1.91	1.68	1.36	1.13	2.19	2.14	1.86	1.47	1.20
		-50	10	2.37	2.31	1.99	1.55	1.26	2.65	2.58	2.18	1.67	1.33

K-Value

Table 5-15 Typical Thermal Properties of Common Building and Insulating Materials^a (Continued)


(Table 4, Chapter 24, 1997 ASHRAE Handbook-Fundamentals)

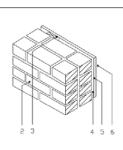
				Resistar	nce ^c (R)	
Description	Density, lb/ft ³	Conductivity ^b (k), Btu·in h·ft ² ·°F	Conductance (C), Btu h·ft ² ·°F	Per Inch Thickness (1/k), °F·ft²·h Btu·in	For Thickness Listed (1/C), °F·ft ² ·h Btu	Specific Heat, Btu lb·°F
Expanded polystyrene, extruded (smooth skin surface)						
(CFC-12 exp.)	1.8-3.5	0.20		5.00	-	0.29
Expanded polystyrene, extruded (smooth skin surface)				2.00		0.27
(HCFC-142b exp.) ¹¹	1.8-3.5	0.20		5.00		0.29
Expanded polystyrene, molded beads	1.0	0.26		3.85		-
	1.25	0.25	-	4.00		<u> </u>
	1.5	0.24	*******	4.17		
	1.75	0.24		4.17		
	2.0	0.23		4.35		
Cellular polyurethane/polyisocyanurate ^{il}						
(CFC-11 exp.) (unfaced)	1.5	0.16-0.18		6.25-5.56		0.38
Cellular polyisocyanurate ⁱ (CFC-11 exp.)						0.50
(gas-permeable facers)	1.5-2.5	0.16-0.18	-	6.25-5.56		0.22
Cellular polyisocyanurate ¹ (CFC-11 exp.)				0.20 0.00		0.22
(gas-impermeable facers)	2.0	0.14	_	7.04		0.22
Cellular phenolic (closed cell) (CFC-11, CFC-113 exp.) ^k	3.0	0.12		8.20		
Cellular phenolic (open cell)	1.8-2.2	0.23		4.40		
Mineral fiber with resin binder	15.0	0.29		3.45		0.17
Mineral fiberboard, wet felted						0.17
Core or roof insulation	16-17	0.34		2.94		
Acoustical tile	18.0	0.35	-	2.86		0.19
Acoustical tile	21.0	0.37	_	2.70		0.17
Mineral fiberboard, wet molded				=		
Acoustical tile ¹	23.0	0.42		2.38		0.14
Wood or cane fiberboard				2.50		0.17
Acoustical tile ¹			0.80		1.25	0.31
Acoustical tile ¹ 0.75 in.	-		0.53		1.89	0.51

Table 3.2A Coefficients of Transmission (U) and Heat Capacities of Frame Walls

There U-coefficients are expressed in Btu per (hour) (square foot) (degree Fahrenheit difference in temperature between the air on the two sides), and are based on an outside wind velocity of 15 mph. The Heat Capacity Units are Btu/ft².F.

Replace Air Space with 3.5-in. R-11 Blanket Insulation (New Item 4)

	1		1	2	1	2
		Resist	ance (R)		Heat C	apacity
	Between	At	Between	At	Betv	veen
Construction	Framing	Framing	Framing	Framing	Fran	ning
Outside surface (15mph wind)	0.17	0.17	0.17	0.17	-	-
2. Siding, wood, 0.5 in. x 8 in. lapped (average)	0.81	0.81	0.81	0.81	0.47	0.47
Sheathing, 0.5-in. asphalt impregnated	1.32	1.32	1.32	1.32	0.23	0.23
4. Nonreflective air space, 3.5 in. (50 F mean; 10 deg F temperature difference)	1.01	-	11.00	-	-	.08
5. Nominal 2-in. x 4-in. wood stud	-	4.38	-	4.38	-	-
6. Gypsum wallboard, 0.5 in.	0.45	0.45	0.45	0.45	0.54	0.54
7. Inside surface (still air)	0.68	0.68	0.68	0.68		
Total Thermal Resistance (R)	R _i =4.44	$R_s = 7.81$	R _i =14.43	$R_s = 7.81$	1.24	1.32


Construction No.1: $U_i = 1/4.44 = 0.225$; $U_s = 1/7.81 = 0.128$. With 20% framing (typical of 2-in. x 4-in. studs @ 16-in. o.e.), $U_{av} = 0.8$ (0.225)+ 0.2 (0.128) = 0.206 (See Eq 9)

Construction No.2: $U_i = 1/14.43 = 0.069$; $U_s = 0.128$. With framing unchanged, $U_{av} = 0.8(0.069) + 0.2(0.128) = 0.081$

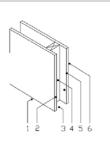
Table 3.2B Coefficients of Transmission (U) and Heat Capacities of Solid Masonry Walls

Coefficients are expressed in Btu per (hour) (square foot) (degree Fahrenheit difference in temperature between the air on the two sides), and are based on an outside wind velocity of 15 mph. The Heat Capacity Units are Btu/ft².F.

Replace Furring Strips and Air Space with 1-in. Extruded Polystyrene (New Item 4)

	1		2	1	2
	Re	esistance (R)		Heat Ca	pacity
	Between	At		Between 1	Furring
Construction	Furring	Furring			
Outside surface (15mph wind)	0.17	0.17	0.17	-	-
2. Common brick, 8 in.	1.60	1.60	1.60	15.2	15.2
3. Nominal 1-in. x 3-in. vertical furring	-	0.94	-	-	-
4. Nonreflective air space, 0.75 in. (50 F mean; 10 deg F	1.01	-	5.00	-	0.05
temperature difference)					
5. Gypsum wallboard, 0.5 in.	0.45	0.45	0.45	0.54	0.54
6. Inside surface (still air)	0.68	0.68	0.68	-	-
Total Thermal Resistance (R)	R _i =3.91	R _s =3.84	R _i =7.90	R _s =15.74	15.79

Construction No.1: $U_i = 1/3.91 = 0.256$; $U_s = 1/3.84 = 0.260$. With 20% framing (typical of 1-in. x 3-in. vertical furring on masonry @ 16-in. o.c.)

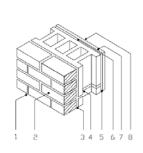

 $U_{av} = 0.8 (0.256) + 0.2 (0.260) = 0.257$

Construction No.2: $U_i = U_s = U_{av} = 1/7.90 = 0.127$

Table 3.2C Coefficients of Transmission (U) and Heat Capacities of Frame Partitions or Interior Walls

Coefficients are expressed in Btu per (hour) (square foot) (degree Fahrenheit difference in temperature between the air on the two sides), and are based on still air (no wind) condition on both sides. The Heat Capacity Units are Btu/ft².F.

Replace Air Space with 3.5-in.R-11 Blanket Insulation (New Item 3)


	1		2		1	2
		Resista	ance (R)		Heat C	apacity
	Between	At	Between	At	Bet	ween
Construction	Framing Framing Framing Framing 0.68				Fra	ming
Inside surface (still air)	0.68	0.68	0.68	0.68	-	-
Gypsum wallboard, 0.5 in.	0.45	0.45	0.45	0.45	0.54	0.54
3. Nonreflective air space, 3.5 in. (50 F mean; 10 deg F	1.01	-	11.00	-	-	0.08
temperature difference)						
4. Nominal 2-in. x 4-in. wood stud	-	4.38	-	4.38		
Gypsum wallboard 0.5 in.	0.45	0.45	0.45	0.45	0.54	0.54
6. Inside surface (still air)	0.68	0.68	0.68	0.68		
Total Thermal Resistance (R)	$R_i = 3.27$	$R_s = 6.64$	$R_i = 13.26$	$R_s = 6.64$	1.08	1.16

Construction No.1: $U_i = 1/3.27 = 0.306$; $U_s = 1/6.64 = 0.151$. With 10% framing (typical of 2-in. x 4-in. studs @ 24-in. o.c), $U_{av} = 0.9 (0.306) + 0.1 (0.151) = 0.290$ Construction No.2: $U_i = 1/13.26 = 0.075_4$ $U_s = 1/6.64 = 0.151$. With framing unchanged, $U_{av} = 0.9 (0.075) + 0.1 (0.151) = 0.083$

Table 3.2 D Coefficients of Transmission (U) and Heat Capacities of Masonry Walls

Coefficients are expressed in Btu per (hour) (square foot) (degree Fahrenheit difference in temperature between the air on the two sides), and are based on an outside wind velocity of 15 mph. The Heat Capacity Units are Btu/ft²-F.

Replace Cinder Aggregate Block with 6-in. Light-weight Aggregate Block with Cores Filled (New Item 4)

	1	1	:	2	1	2
		Resista	nce (R)		Heat C	apacity
	Between	At	Between	At	Betv	veen
Construction	Furring	Furring	Furring	Furring	Fur	ring
Outside surface (15mph wind)	0.17	0.17	0.17	0.17	-	-
2. Face brick, 4 in.	0.44	0.44	0.44	0.44	8.23	8.23
3. Cement mortar, 0.5 in	0.10	0.10	0.10	0.10	0.97	0.97
4. Concrete block, cinder aggregate, 8 in.	1.72	1.72	2.99	2.99	7.90	7.90
5. Reflective air space, 0.75 in. (50 F mean; 30 deg F	2.77	-	2.77	-		
temperature difference)						
6. Nominal 1-in. x 3-in. vertical furring	-	0.94	-	0.94		
7. Gypsum wallboard, 0.5 in., foil backed	0.45	0.45	0.45	0.45	0.54	0.54
8. Inside surface (still air)	0.68	0.68	0.68	0.68		
Total Thermal Resistance (R)	R _i =6.33	R _s =4.50	R _i =7.60	R _s =5.77	17.64	17.64

Construction No.1: $U_i = 1/6.33 = 0.158$; $U_s = 1/4.50 = 0.222$. With 20% framing (typical of 1-in. x 3-in. vertical furring on masonry @ 16-in.o.c), $U_{av} = 0.8 (0.158) + 0.2 (0.222) = 0.171$

Construction No.2: $U_i = 1/7.60 = 0.1324$ $U_s = 1/5.77 = 0.173$. With 20% framing unchanged, $U_{av} = 0.8 (0.132) + 0.2 (0.173) = 1.40$

Table 3.2E Coefficients of Transmission (U) and Heat Capacities of Masonry Cavity Walls

Coefficients are expressed in Btu per (hour) (square foot) (degree Fahrenheit difference in temperature between the air on the two sides), and are based on an outside wind velocity of 15 mph. The Heat Capacity Units are Btu/ft².F.

Replace Furring Strips and Gypsum Wallboard with 0.625-in. Plaster (Sand Aggregate) Applied Directly to Concrete Block-Fill 2.5-in. Air Space with Vermiculite Insulation (New Items 3 and 7.)

	1	1	2	1	2
		Resistance (F	(3)	Heat C	apacity
	Between	At		Bet	ween
Construction	Furring	Furring		Fur	ring
Outside surface (15 mph wind)	0.17	0.17	0.17	-	-
Common brick, 8 in.	0.80	0.80	0.80	15.2	15.2
3. Nonreflective air space, 2.5 in. (30 F mean; 10 deg F	1.10*	1.10*	5.32*	-	0.32
temperature difference)					
Concrete block, stone aggregate, 4 in.	0.71	0.71	0.71	5.1	5.1
5. Nonreflective air space, 0.75 in. (50 F mean; 10 deg F	1.01	-	-		
temperature difference)					
6. Nominal 1-in. x 3-in. vertical furring	-	0.94	-		
Gypsum wallboard, 0.5 in.	0.45	0.45	0.11	0.54	1.09
8. Inside surface (still air)	0.68	0.68	0.68	-	-
Total Thermal Resistance (R)	R _i =4.92	R _s =4.85	$R_i = R_S = 7.79$	20.8	21.7

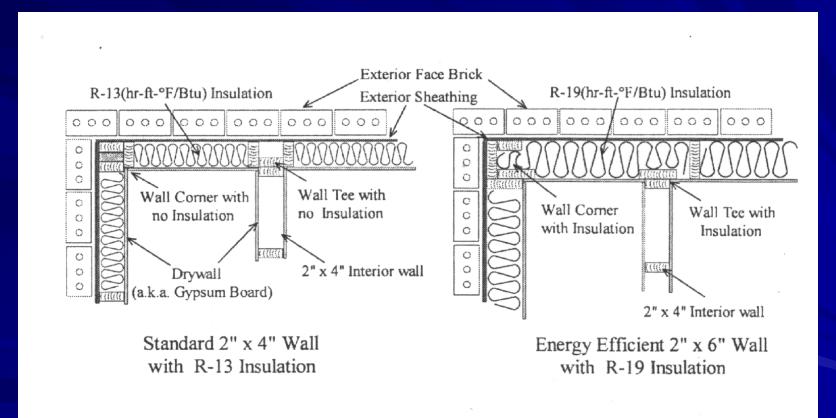
 $Construction \ No.1: \qquad U_i = 1/4.92 = 0.203; \ U_s = 1/4.85 = 0.206. With 20\% \ framing \ (typical of 1-in.\ x\ 3-in.\ vertical furring on masonry \ @\ 16-in.\ o.c.)$

 $U_{av} = 0.8 \ (0.203) + 0.2 \ (0.206) = 0.204$ Construction No.2: $U_i = U_s = U_{av} = 1/7.9 = 0.128$

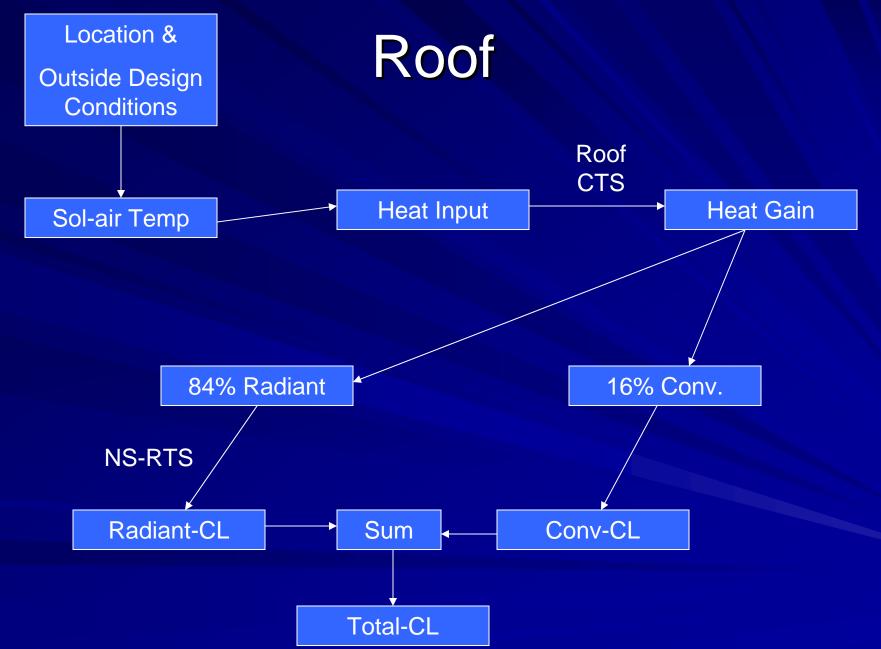
* Interpolated value from Table 3.4

** Calculated value from Table 3.1.

Table 3.2F Coefficients of Transmission (U) and Heat Capacities of Masonry Partitions


Coefficients are expressed in Btu per (hour) (square foot) (degree Fahrenheit difference in temperature between the air on the two sides), and are based on still air (no wind) condition on both sides. The Heat Capacity Units are Btu/ft².F.

Replace Concrete Block with 4-in. Gypsum Tile (New Item 3)	1	2	1	2			
Construction	Resistan	ice (R)	Heat Capacity				
Inside surface (still air)	0.68	0.68	-	-			
2. Plaster, lightweight aggregate, 0.625 in.	0.39	0.39	0.47	0.47			
3. Concrete block, cinder aggregate, 4 in.	1.11	1.67	4.20	2.47			
4. Plaster, lightweight aggregate, 0.625 in.	0.39	0.39	0.47	0.47			
5. Inside surface (still air)	0.68	0.68	-	-			
Total Thermal Resistance (R)	3.25	3.81	5.14	3.41			


Construction No.1: $U_i = 1/3.25 = 0.308$ Construction No.2: $U_i = 1/3.81 = 0.262$

Energy Efficient Wall

Plan view of standard and energy-efficient wood-frame wall construction.

Roof Heat Gain

Roof CTS

ตารางที่ 3: Roof Conduction Time Series (CTS)

	SLOPED FRAME ROOFS									IETAL	DECK	ROOFS			CO	NCREI	E ROC	FS	
Roof Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
U-Factor, W/(m2.K)	0.249	0.227	0.255	0.235	0.239	0.231	0.393	0.329	0.452	0.370	0.323	0.206	0.297	0.304	0.296	0.288	0.315	0.313	0.239
Total R	4.0	4.4	3.9	4.2	4.2	4.3	2.5	3.0	2.2	2.7	3.1	4.9	3.4	3.3	3.4	3.5	3.2	3.2	4.2
Mass, kg/m ²	26.7	21.0	14.0	34.7	55.5	34.9	48.9	55.9	23.9	30.9	25.0	27.2	57.6	149.2	214.3	279.3	360.7	474.5	362.3
Thermal Capacity,	26.6	16.4	12.3	47.0	73.5	47.0	75.6	79.7	28.6	32.7	28.6	32.7	57.2	134.9	190.1	245.2	333.2	437.4	331.1
kJ/(m ² .K)																			
Hour								Roof (Conducti	on Time	Series	(CTS)							
0	6	10	27	1	1	1	0	1	18	4	8	1	0	1	2	2	2	3	1
1	45	57	62	17	17	12	7	3	61	41	53	23	10	2	2	2	2	3	2
2	33	27	10	31	34	25	18	8	18	35	30	38	22	8	3	3	5	3	6
3	11	5	1	24	25	22	18	10	3	14	7	22	20	11	6	4	6	5	8
4	3	1	0	14	13	15	15	10	0	4	2	10	14	11	7	5	7	6	8
5	1	0	0	7	6	10	11	9	0	1	0	4	10	10	8	6	7	6	8
6	1	0		4	3	6	8	8	0	1	0	2	7	9	8	6	6	6	7
7	0	0	0	2	1	4	6	7	0	0	0	0	5	7	7	6	6	6	7
8	0	0	0	0	0	2	5	5	0	0	0	0	4	6 5	6	6	6 5	6 5	6 5
10	0	0	0	0	0	1	3	5	0	0	0	0	2	5	5	6	5	5	5
11	0	0	0	0	0	1	2	4	0	0	0	0	1	4	5	5	5	5	5
12	0	0	0	0	0	0	1	4	0	0	0	0	1	3	5	5	4	5	4
13	0	0	0	0	0	0	1	3	0	0	0	0	1	3	4	5	4	4	4
14	0	0	0	0	0	0	1	3	0	0	0	0	0	3	4	4	4	4	3
15	0	0	0	0	0	0	1	3	0	0	0	0	0	2	3	4	4	4	3
16	0	0	0	0	0	0	0	2	0	0	0	0	0	2	3	4	3	4	3
17	0	0	0	0	0	0	0	2	0	0	0	0	0	2	3	4	3	4	3
18	0	0	0	0	0	0	0	2	0	0	0	0	0	1	3	3	3	3	2
19	0	0	0	0	0	0	0	2	0	0	0	0	0	1	2	3	3	3	2
20	0	0	0	0	0	0	0	1	0	0	0	0	0	1	2	3	3	3	2
21	0	0	0	0	0	0	0	1	0	0	0	0	0	1	2	3	3	3	2
22	0	0	0	0	0	0	0	1	0	0	0	0	0	1	2	3	2	2	2
23	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

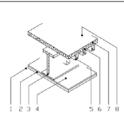
Table 3.2I Coefficients of Transmission (U) and Heat Capacities of Wood Construction Flat Roofs and Ceilings (Winter Conditions, Upward Flow)

Coefficients are expressed in Btu per (hour) (square foot) (degree Fahrenheit difference in temperature between the air on the two sides), and are based upon outside wind velocity of 15 mph. The Heat Capacity Units are Btu/ft².F.

Replace Roof Deck Insulation and 7.25-in. Air Space with 6-in. R-19 Blanket Insulation and 1.25-in. Air Space (New Items 5 and 7)

		1	l	2	:	1	2
			Resista	nce (R)		Heat C	apacity
Construction	1	Between	At	Between	At	Betv	veen
(Heat Flow up)		Joists	Joists	Joists	Joists	Joi	ists
Inside surface (Still Air)		0.61	0.61	0.61	0.61	-	-
2. Acoustical tile, fiberboard, glued, 0.5 in.		1.25	1.25	1.25	1.25	0.31	0.31
3. Gypsum wallboard, 0.5 in		0.45	0.45	0.45	0.45	0.54	0.54
4. Nominal 2-in. x 8-in. ceiling joists		-	9.06	-	9.06	-	-
5. Non reflective air space, 7.25 in. (50 F m	ean;10deg F	0.93*	-	1.05**	-	-	0.14
temperature difference)							
6. Plywood deck, 0.625 in.		0.78	0.78	0.78	0.78	0.51	0.51
7. Rigid roof deck insulation, C= 0.72, (R =	1/C)	1.39	1.39	19.00	-	-	NA
8. Built-up roof		0.33	0.33	0.33	0.33	0.77	0.77
9. Outside surface (15 mph wind)		0.17	0.17	0.17	0.17	-	-
Total Thermal Resistance (R)		$R_i = 5.91$	R _s =14.04	R _i =23.64	R _s =12.65	2.13	2.27+

Construction No.1: $U_1 = 1/5.91 = 0.169$; $U_2 = 1/14.04 = 0.071$. With 10% framing (typical of 2-in. joists @ 16-in.o.c.), $U_{xy} = 0.9 (0.169) + 0.1 (0.071) = 0.159$


Construction No.2: $U_i = 1/23.64 = 0.042$; $U_s = 1/12.65 = 0.079$ With framing unchanged, $U_{av} = 0.9 (0.042) + 0.1 (0.079) = 0.046$

*Use largest air space (3.5 in.) value shown in Table 3.4

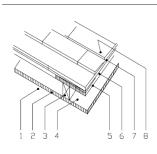
Table 3.2J Coefficients of Transmission (U) and Heat Capacities of Metal Construction Flat Roofs and Ceilings (Winter Conditions, Upward Flow)

Coefficients are expressed in Btu per (hour) (square foot) (degree Fahrenheit difference in temperature between the air on the two sides), and are based on upon an outside wind velocity of 15 mph. The Heat Capacity Units are Btu/ft².F.

Replace Rigid Roof Dick Insulation (C = 0.24) and Sand Aggregate Plaster with Rigid Roof Deck In Sulation, C = 0.36 and Lightweight Aggregate Plaster (New Item 2 and 6)

Construction	1	2	1	2
(Heat Flow Up)	Resistan	ce (R)	Heat Ca	pacity
Inside surface (still air)	0.61	0.61	-	
Metal lath and lightweight aggregate plaster, 0.75 in.	0.13	0.47	1.31	0.56
3. Structural beam	0.00*	0.00*	-	-
Nonreflective air space (50 F mean; 10 deg F temperature difference)	0.93**	0.93**	-	-
5. Metal deck	0.00*	0.00*	0.24	0.24
6. Rigid roof deck insulation, C = 0.24 (R=1/C)	4.17	2.78	NA	NA
7. Built-up roofing, 0.375 in.	0.33	0.33	0.77	0.77
8. Outside surface (15 mph wind)	0.17	0.17	-	-
Total Thermal Resistance (R)	6.34	5.29	2.32	1.57

Construction No.1: $U_i = 1/6.34 = 0.158$ Construction No.2: $U_i = 1/5.29 = 0.189$


[•] If structural beams and metal deck are to be considered, the technique shown in Example A3.1 may be used to estimate total R. Full scale testing of a suitable portion of the construction is, however, preferable.

^{**}Use largest air space (3.5 in.) value shown in Table 3.4.

Table 3.2K Coefficients of Transmission (U) and Heat Capacities of Pitched Roofs a

Coefficients are expressed in Btu per (hour) (square foot) (degree Fahrenheit difference in temperature between the air on the two sides), and are based on outside wind velocity of 15 mph for heat flow upward and 7.5 mph for heat flow downward. The Heat Capacity Units are Btu/ft².F.

Find U_{av} for same Construction 2 with Heat Flow Down (Summer Conditions)

		l	2	2	1	2
		Resista	ance (R)		Heat C	apacity
Construction 1	Between	At	Between	At	Betv	veen
(Heat Flow up) (Reflective Air Space)	Rafters	Rafters	Rafters	Rafters	Raf	ters
1. Inside surface (Still Air)	0.62	0.62	0.76	0.76	-	-
2. Gypsum wallboard, 0.5 in, foil backed	0.45	0.45	0.45	0.45	0.54	0.54
3. Nominal 2-in. x 4-in. ceiling rafter	-	4.38	-	4.38	-	-
4. 45 deg slope reflective air space, 3.5 in. (50 F mean,	2.17	-	4.33	-	-	-
30 deg F temperature difference)						
5. Plywood sheathing, 0.625 in.	0.78	0.78	0.78	0.78	0.51	0.51
6. Felt building membrane	0.06	0.06	0.06	0.06	Neg	Neg
7. Asphalt shingle roofing	0.44	0.44	0.44	0.44	0.33	0.33
8. Outside surface (15 mph wind)	0.17	0.17	0.25**	0.25**	-	-
Total Thermal Resistance (R)	R _i =4.69	$R_s = 6.90$	$R_i = 7.07$	$R_s = 7.12$	1.38	1.38

Construction No.1: $U_i = 1/4.69 = 0.213$; $U_s = 1/6.90 = 0.145$. With 10% framing (typical of 2-in. joists @ 16-in.o.c.), $U_{av} = 0.9 (0.213) + 0.1 (0.145) = 0.206$ Construction No.2: $U_i = 1/7.07 = 0.141$; $U_s = 1/7.12 = 0.140$ With framing unchanged, $U_{av} = 0.9 (0.141) + 0.1 (0.140) = 0.141$

Find U., for same Construction 2 with Heat Flow Down (Summer Conditions)

Find C _{av} for same Constitution 2 with Heat Flow D	own (Summe	T Condition:	3)			
		3	4	1	3	4
		Resist	ance (R)		Heat C	apacity
Construction 2	Between	At	Between	At	Betv	veen
(Heat Flow up) (Non-Reflective Air Space)	Rafters	Rafters	Rafters	Rafters	Raf	ters
1. Inside surface (Still Air)	0.62	0.62	0.76	0.76	-	-
2. Gypsum wallboard, 0.5 in, foil backed	0.45	0.45	0.45	0.45	0.54	0.54
3. Nominal 2-in. x 4-in. ceiling rafter	-	4.38	-	4.38	-	-
4. 45 deg slope reflective air space, 3.5 in.	0.96	-	0.90*	-	-	-
(50 F mean, 30 deg F temperature difference)						
5. Plywood sheathing, 0.625 in.	0.78	0.78	0.78	0.78	0.51	0.51
6. Felt building membrane	0.06	0.06	0.06	0.06	Neg	Neg
7. Asphalt shingle roofing	0.44	0.44	0.44	0.44	0.33	0.33
8. Outside surface (15 mph wind)	0.17	0.17	0.25**	0.25**	-	-
Total Thermal Resistance (R)	$R_i = 3.48$	$R_s = 6.90$	$R_i = 3.64$	$R_s = 7.12$	1.38	1.38

Construction No.1: $U_i = 1/3.48 = 0.287$; $U_s = 1/6.90 = 0.145$. With 10% framing (typical of 2-in. joists @ 16-in.o.c.), $U_{av} = 0.9$ (0.287) + 0.1 (0.145) = 0.273 Construction No.2: $U_i = 1/3.64 = 0.275$; $U_s = 1/7.12 = 0.140$ With framing unchanged, $U_{av} = 0.9$ (0.275) + 0.1 (0.140) = 0.262

Pitch of roof-45 deg.

^{*}Air space value at 90 F mean, 10 deg F temperature difference.

^{** 7.5 -} mph wind.

R-Value of Attics

Table 5 Effective Thermal Resistance of Ventilated Attics^a (Summer Condition)

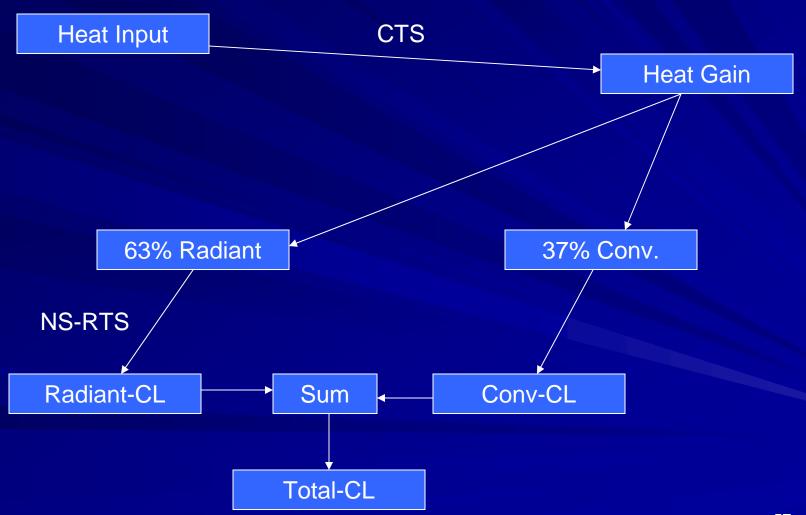
				NONREFL	ECTIVE S	URFACES					
		No Ven	tilation ^b	Natural V	entilation			Power Ve	ntilation ^c		
	_				V	entilation I	Rate, cfm/ft	.2			
		()	0.	1 ^d	0.	.5	1.	0	1.	.5
Ventilation Air Temperature,	Sol-Air ^f - Temperature,				Ceiling	g Resistance	e Re, ft².°F	·h/Btu			
°F	°F	10	20	10	20	10	20	10	20	10	20
	120	1.9	1.9	2.8	3.4	6.3	9.3	9.6	16	11	20
80	140	1.9	1.9	2.8	3.5	6.5	10	9.8	17	12	21
	160	1.9	1.9	2.8	3.6	6.7	11	10	18	13	22
	120	1.9	1.9	2.5	2.8	4.6	6.7	6.1	10	6.9	13
90	140	1.9	1.9	2.6	3.1	5.2	7.9	7.6	12	8.6	15
	160	1.9	1.9	2.7	3.4	5.8	9.0	8.5	14	10	17
	120	1.9	1.9	2.2	2.3	3.3	4.4	4.0	6.0	4.1	6.9
100	140	1.9	1.9	2.4	2.7	4.2	6.1	5.8	8.7	6.5	10
	160	1.9	1.9	2.6	3.2	5.0	7.6	7.2	11	8.3	13
				REFLEC	CTIVE SUR	FACES					
	120	6.5	6.5	8.1	8.8	13	17	17	25	19	30
80	140	6.5	6.5	8.2	9.0	14	18	18	26	20	31
	160	6.5	6.5	8.3	9.2	15	18	19	27	21	32
	120	6.5	6.5	7.5	8.0	10	13	12	17	13	19
90	140	6.5	6.5	7.7	8.3	12	15	14	20	16	22
	160	6.5	6.5	7.9	8.6	13	16	16	22	18	25
	120	6.5	6.5	7.0	7.4	8.0	10	8.5	12	8.8	12
100	140	6.5	6.5	7.3	7.8	10	12	11	15	12	16
	160	6.5	6.5	7.6	8.2	11	14	13	18	15	20

^aAlthough the term effective resistance is commonly used when there is attic ventilation, this table includes values for situations with no ventilation. The effective resistance of the attic added to the resistance (1/U) of the ceiling yields the effective resistance of this combination based on sol-air (see <u>Chapter 29</u>) and room temperatures. These values apply to wood frame construction with a roof deck and roofing that has a conductance of 1.0 Btu/h·ft²-9F.

^bThis condition cannot be achieved in the field unless extreme measures are taken to tightly seal the attic.

^cBased on air discharging outward from attic.

^dWhen attic ventilation meets the requirements stated in <u>Chapter 26</u>, 0.1 cfm/ft² is assumed as the natural summer ventilation rate.


eWhen determining ceiling resistance, do not add the effect of a reflective surface facing the attic, as it is accounted for in the Reflective Surfaces part of the table.

^fRoof surface temperature rather than sol-air temperature (see <u>Chapter 29</u>) can be used if 0.25 is subtracted from the attic resistance shown.

 $^{{}^{}g}$ Surfaces with effective emittance ${\epsilon}_{\it{eff}}$ = 0.05 between ceiling joists facing attic space.

Partition/Floor/Ceiling Heat Gain

Ceiling/Floor/Partition

Partition/Ceiling/Floor

Cooling load from partitions, ceilings, floors

$$q = UA(t_o - t_{rc})$$

- U =design heat transfer coefficient for partition, ceiling, or floor, from Chapter 5
- A =area of partition, ceiling, or floor, calculated from building plans
- t_b = temperature in adjacent space
- t_{rc} = inside design temperature (constant) in conditioned space

Table 3.2G Coefficients of Transmission (U) and Heat Capacities of Frame Construction Ceilings and Floors

Coefficients are expressed in Btu per (hour) (square foot) (degree Fahrenheit difference in temperature between the air on the two sides), and are based on still air (no wind) on both sides The Heat Capacity Units are Btu/ft².F.

Assume Unheated Attic Space above Heated Room with Heat Flow Up-Remove Tile, Felt, Plywoood, Sub-floor and Air Space Replace with T-19 Blanket Insulation (New Item 4)

	Heated Room Below	1			2	1	2
	Unheated Space		Resistance	e (R)		Heat Ca	pacity
	Construction	Between Floor	At Floor	Between	At Floor	Betweer	Floor
	(Heat Flow up)	Joists	Joists	Floor	Joists	Jois	sts
				Joists			
	Botton surface (Still Air)	0.61	0.61	0.61	0.61	-	-
\times	Metal lath and ligh weight aggregate,	0.47	0.47	0.47	0.47	0.57	0.57
	plaster, 0.75 in.						
	3. Nominal 2-in. x 8-in. floor joists	-	9.06	-	9.06	-	-
	4. Nonreflective air space, 7.25 in.	0.93*	-	19.00	-	-	0.14
	5. Wood Subfloor, 0.75 in.	0.94	0.94	-	-	0.60	-
	6. Plywood, 0.625 in.	0.78	0.78	-	-	0.51	-
	7. Felt building membrane	0.06	0.06	-	-	-	-
1234 56789	8. Resilient tile	0.05	0.05	-	-	0.34	-
	9. Top surface (still air)	0.61	0.61	0.61	0.61	-	-
,	Total Thermal Resistance (R)	R _i =4.45	R _s =12.58	$R_i = 20.69$	$R_s = 10.75$	20.02	0.71

Construction No.1: $U_i = 1/4.45 = 0.225$; $U_s = 1/12.58 = 0.079$. With 10% framing (typical of 2-in. joists @ 16-in.o.c.), $U_{av} = 0.9$ (0.225)+ 0.1 (0.079) = 0.210


Construction No.2: $U_i = 1/20.69 = 0.048$; $U_s = 1/10.75 = 0.093$ With framing unchanged, $U_{av} = 0.9 (0.048) + 0.1 (0.093) = 0.053$

*Use largest air space (3.5 in.) value shown in Table 3.4

Table 3.2H Coefficients of Transmission (U) and Heat Capacities of Flat Masonry Roofs with Built-up Roofing, with and without Suspended Ceilings (Winter Conditions, Upward Flow)

Coefficients are expressed in Btu per (hour) (square foot) (degree Fahrenheit difference in temperature between the air on the two sides), and are based upon an outside wind velocity of 15 mph. The Heat Capacity Units are Btu/ft².F.

Add Rigid Roof Deck Insulation, C = 0.24 (R=1/C) (New Item 7)

1100 11601 21001 2101 1101 1101 (11 11 0) (11	*** ********			
Construction	1	2	1	2
(Heat Flow Up)	Resistar	ice (R)	Heat C	apacity
Inside surface (still air)	0.61	0.61	-	-
Metal lath and lightweight aggregate plaster, 0.75 in.	0.47	0.47	-	-
3. Non reflective air space, greater than 3.5 in. (50 F mean	n;		0.57	0.57
10 deg F temperature difference)	0.93*	0.93*		
4. Metal ceiling suspension system with metal hanger rod	ls 0**	0**	-	-
5. Corrugated metal deck	0	0	0.24	0.24
Concrete slab, lightweight aggregate, 2 in.	2.22	2.22	1.00	1.00
7. Rigid roof deck insulation (none)	-	4.17	-	NA
8. Built-up roofing, 0.375 in.	0.33	0.33	0.77	0.77
9. Outside surface (15 mph wind)	0.17	0.17	-	-
Total Thermal Resistance (R)	4.73	8.90	2.58	2.58+

Construction No.1: $U_i = 1/4.73 = 0.211$ Construction No.2: $U_i = 1/8.90 = 0.112$

* Use largest air space (3.5 in.) value shown in Table 3.4

* *Area of hanger rods is negligible in relation to ceiling area.

Temperature for Adjacent Uncond-Room

$$t_{u} = [t_{i}(A_{1}U_{1} + A_{2}U_{2} + \dots + \text{etc.}) \\ + t_{o}(KV_{o} + A_{a}U_{a} + A_{b}U_{b} + \dots + \text{etc.})] \\ \div ([(A_{1}U_{1} + A_{2}U_{2} + \dots + \text{etc.})) \\ + (KV_{o} + A_{a}U_{a} + A_{b}U_{b} + \dots + \text{etc.})]$$

$$where$$

$$t_{u} = \text{temperature in unheated space, °F (°C)} \\ t_{i} = \text{indoor design temperature of heated room, °F (°C)} \\ t_{o} = \text{outdoor design temperature, °F (°C)} \\ A_{1}, A_{2}, \text{etc.} = \text{areas of surface of unheated space adjacent to heated space, ft}^{2} (m^{2})$$

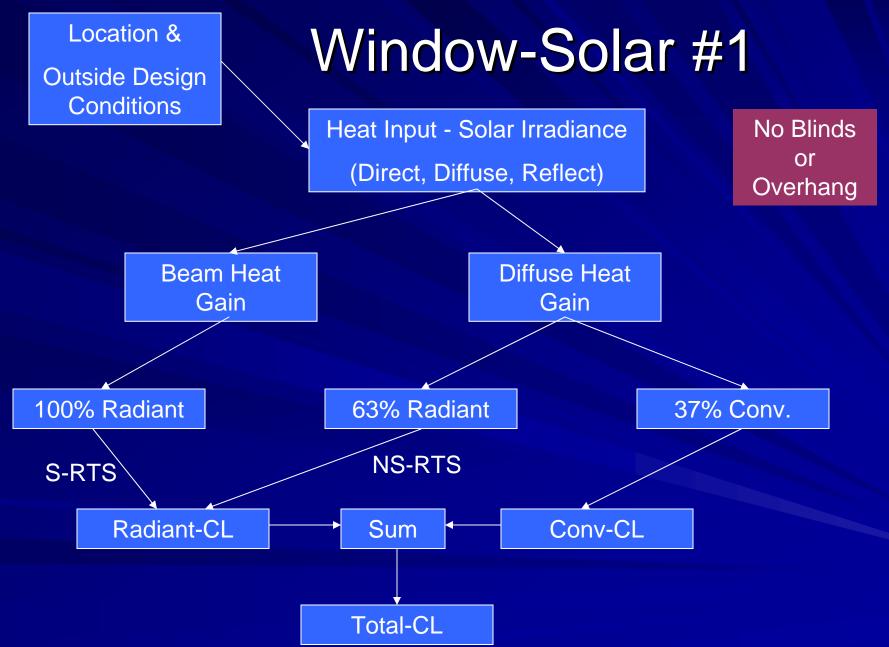
$$A_{a}, A_{b}, \text{etc.} = \text{areas of surface of unheated space exposed to outdoors, ft}^{2} (m^{2})$$

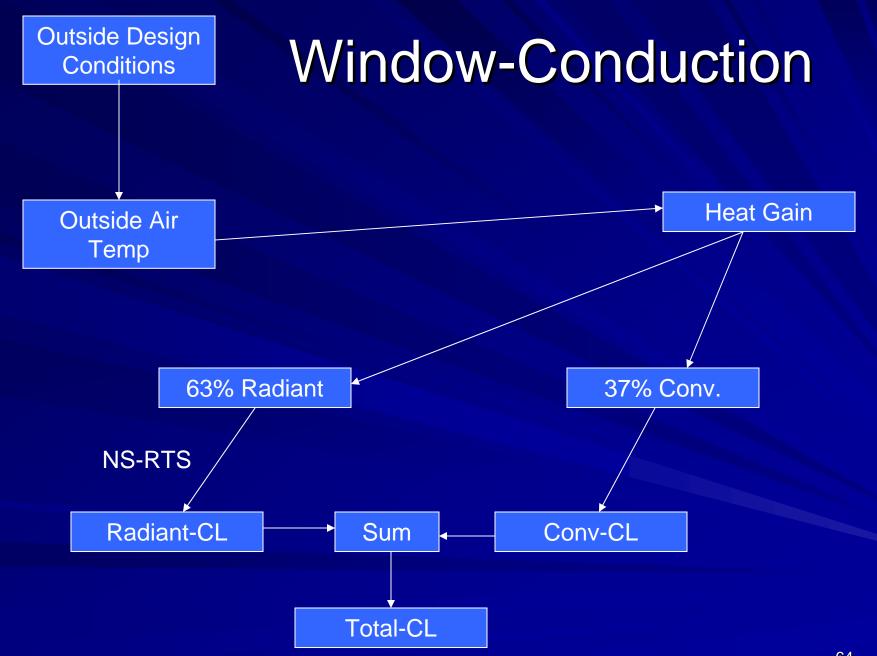
$$U_{1}, U_{2}, \text{etc.} = \text{heat transfer coefficients of surfaces of } A_{1}, A_{2}, \text{etc.}, \\ \text{Btu/h· ft}^{2} \cdot \text{°F (W/(m}^{2} \cdot \text{°C))}$$

$$U_{a}, U_{b}, \text{etc} = \text{heat transfer coefficients of surfaces of } A_{a}, A_{b}, \text{etc.} \\ \text{Btu/h· ft}^{2} \cdot \text{°F (W/(m}^{2} \cdot \text{°C))}$$

$$V_{o} = \text{rate of introduction of outside air into the unheated space by infiltration and/or ventilation, cfm (L/s)}$$

$$K = 1.10 (1200)$$


Temperature for Adjacent Uncond-Room


Reasonable accuracy for ordinary unconditioned spaces may be attained if the following approximations for adjacent rooms are used:

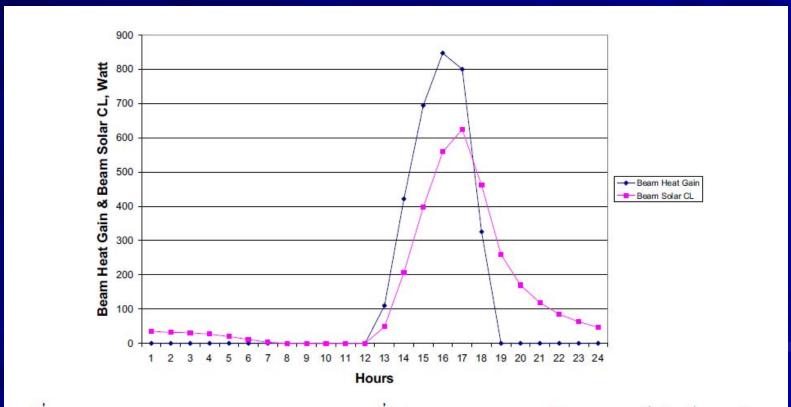
- 1. Cooling with adjacent unconditioned room. Select for computation a temperature equal to $t_i + 0.667(t_o t_i)$ in the unconditioned space.
- 2. Heating with adjacent room unheated. Select for computation a temperature equal to $t_i 0.50(t_i t_o)$ in the unconditioned space.

WINDOW HEAT GAIN

- 1) Window Conduction Heat Gain
- 2) Window Solar Heat Gain

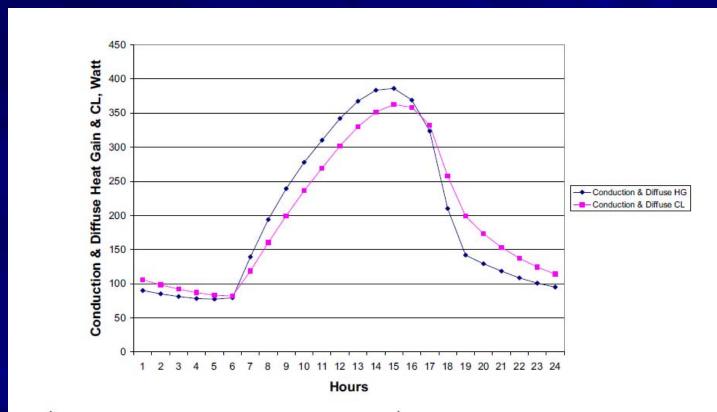
W-Window Heat Gain

ตารางที่ 12: Window Component of Heat Gain (No Blinds or Overhang)

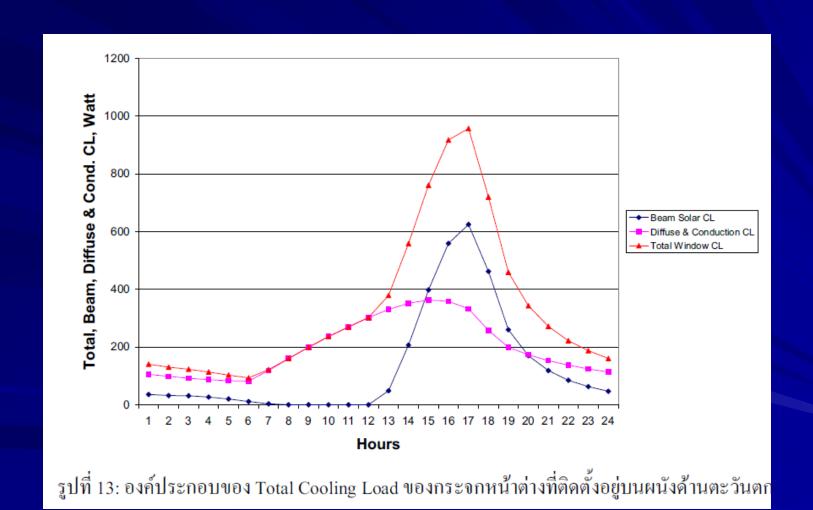

		Dire ct S	Solar		1		Diffuse S	olar			Con	duction	
Local	Surface			Dire ct						Diffus e			Total
Standard	Incident	Surface		Solar	Ground		Sky	Surface		Solar	Outside	Conduction	Window
Time	Angle	Dire ct	Dire ct	Heat	Reflected	Ratio	Diffuse	Diffuse	Hemis.	Heat	Temp.	Heat	Heat
LST	θ	E_D	SHGC	Gain	$\boldsymbol{E_r}$	Y	\boldsymbol{E}_{d}	$E_d + E_r$	SHGC	Gain	t_o	Gain	Gain
Hour	Degree	W/m ²		Watt	W/m^2		W/m ²	W/m^2		Watt	°C	Watt	Watt
1	100.6	0	0	0	0	0.48	0	0	0.63	0	30.5	89.9	89.9
2	115.3	0	0	0	0	0.45	0	0	0.63	0	30.2	85	85
3	129.8	0	0	0	0	0.45	0	0	0.63	0	29.9	81.1	81.1
4	144.2	0	0	0	0	0.45	0	0	0.63	0	29.7	78.2	78.2
5	157.7	0	0	0	0	0.45	0	0	0.63	0	29.6	77.2	77.2
6	167.7	0	0	0	0	0.45	0	0	0.63	0	29.7	79.2	79.2
7	164.2	0	0	0	19	0.45	29.6	48.6	0.63	55.2	30.1	84.1	139.2
8	151.8	0	0	0	46.2	0.45	42.8	89	0.63	101	30.7	92.9	193.9
9	137.8	0	0	0	69.9	0.45	47.8	117.7	0.63	133.6	31.7	105.6	239.2
10	123.4	0	0	0	88.7	0.45	50.1	138.8	0.63	157.6	32.7	120.3	277.9
11	108.7	0	0	0	101.4	0.45	51.3	152.7	0.63	173.3	33.9	136.9	310.2
12	94.1	0	0	0	107.1	0.52	59.9	166.9	0.63	189.5	35.1	152.6	342.1
13	79.4	176.2	0.346	110	105.4	0.64	73.6	179	0.63	203.2	35.9	164.3	477.5
14	64.7	402.5	0.581	421.5	96.5	0.79	89.8	186.3	0.63	211.5	36.5	172.2	805.1
15	50.2	584.7	0.659	694.7	81	0.96	105	186	0.63	211.1	36.7	175.1	1080.8
16	35.8	691.1	0.681	847.5	59.8	1.11	113.5	173.4	0.63	196.8	36.5	172.2	1216.4
17	22.3	663	0.67	800.3	34.4	1.22	105.1	139.5	0.63	158.3	36	165.3	1123.9
18	12.3	270.7	0.668	325.8	6.6	1.28	42.4	49	0.63	55.6	35.2	154.5	535.9
19	15.8	0	0	0	0	1.26	0	0	0.63	0	34.3	141.8	141.8
20	28.2	0	0	0	0	1.18	0	0	0.63	0	33.4	129.1	129.1
21	42.2	0	0	0	0	1.05	0	0	0.63	0	32.6	118.3	118.3
22	56.6	0	0	0	0	0.89	0	0	0.63	0	31.9	108.5	108.5
23	71.3	0	0	0	0	0.72	0	0	0.63	0	31.3	100.7	100.7
24	85.9	0	0	0	0	0.58	0	0	0.63	0	30.9	94.8	94.8
							Number						
1	2	3	4	5	6	7	8	9	10	11	12	13	14

W-Window CL

ตารางที่ 13: Window Component of Cooling Load (No Blinds or Overhang)


		Di	re ct So	lar			Di	ffuse Sol	ar and Con	duction T	hrough Gl	as s		
Local		Heat Gain	Solar		Dire ct				He at Gair	1	Nonsolar		Diff. &	Total
Standard	Be am	Radiant	RTS	Radiant	Solar	Diffuse	Conduction	Total	Convective	Radiant	RTS	Radiant	Conduc.	Window
Time	He at	100%	Zone	Cooling	Cooling	Heat	Heat	100%	37%	63%	Zone	Cooling	Cooling	Cooling
LST	Gain		Type 4	Load	Load	Gain	Gain				Type 4	Load	Load	Load
Hour	Watt	Watt	%	Watt	Watt	Watt	Watt	Watt	Watt	Watt	%	Watt	Watt	Watt
1	0	0	44	35.3	35.3	0	89.9	89.9	33.3	56.7	41	72.1	105.4	140.6
2	0	0	19	32	32	0	85	85	31.5	53.6	20	66.7	98.2	130.2
3	0	0	11	30.9	30.9	0	81.1	81.1	30	51.1	12	62	92	122.9
4	0	0	7	26.7	26.7	0	78.2	78.2	28.9	49.3	8	57.8	86.8	113.4
5	0	0	5		19.7	0	77.2	77.2	28.6	48.6	5	54.5	83.1	102.8
6	0	0	3	11.3	11.3	0	79.2	79.2	29.3	49.9	4	52.6	81.9	93.2
7	0	0	3	3.3	3.3	55.2	84.1	139.2	51.5	87.7	3	67.1	118.6	121.9
8	0	0	2	0	0	101	92.9	193.9	71.7	122.1	2	88.2	160	160
9	0	0	1	0	0	133.6	105.6	239.2	88.5	150.7	1	111	199.4	199.4
10	0	0	1	0	0	157.6	120.3	277.9	102.8	175.1	1	133.5	236.3	236.3
11	0	0	1	0	0	173.3	136.9	310.2	114.8	195.4	1	154.7	269.4	269.4
12	0	0	1	0	0	189.5	152.6	342.1	126.6	215.5	1	175.3	301.9	301.9
13	110	110	1	48.4	48.4	203.2	164.3	367.5	136	231.5	1	194.1	330.1	378.5
14	421.5	421.5	1	206.3	206.3	211.5	172.2	383.6	141.9	241.7	0	209.6	351.6	557.9
15	694.7	694.7	0	397.8	397.8	211.1	175.1	386.2	142.9	243.3	0	219.7	362.6	760.4
16	847.5	847.5	0	558.9	558.9	196.8	172.2	369	136.5	232.5	0	221.9	358.4	917.4
17	800.3	800.3	0	624.6	624.6	158.3	165.3	323.6	119.7	203.9	0	212.8	332.5	957.1
18	325.8	325.8	0	461.6	461.6	55.6	154.5	210.1	77.7	132.4	0	180	257.7	719.4
19	0	0	0	259.9	259.9	0	141.8	141.8	52.5	89.3	0	146.6	199	459
20	0	0	0	169.9	169.9	0	129.1	129.1	47.8	81.3	0	125.2	173	342.9
21	0	0	0	118.6	118.6	0	118.3	118.3	43.8	74.5	0	109.4	153.2	271.8
22	0	0	0	84.9	84.9	0	108.5	108.5	40.2	68.4	0	97.1	137.2	222.1
23	0	0	0	63	63	0	100.7	100.7	37.3	63.4	0	86.9	124.2	187.2
24	0	0	0	46.5	46.5	0	94.8	94.8	35.1	59.7	0	78.7	113.8	160.3
							Column 1							
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Beam Solar Time-delay Effect


รูปที่ 11: Time-delay Effect จาก Solar RTS Values ที่มีต่อ Beam Heat Gain ผ่านกระจกหน้าต่างด้านตะวันตก

Diff. Solar Time-delay Effect

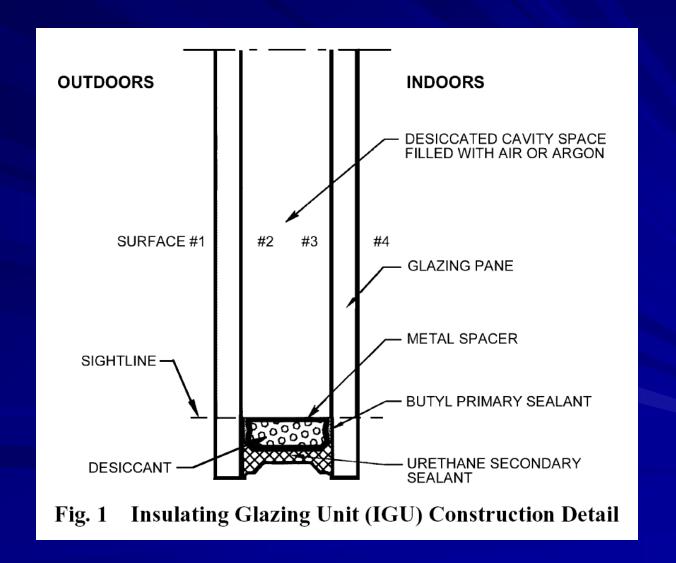
รูปที่ 12: Time-delay Effect จาก NonSolar RTS Values ที่มีต่อ Conduction และ Diffuse Heat Gain ผ่านกระจก หน้าต่างด้านตะวันตก

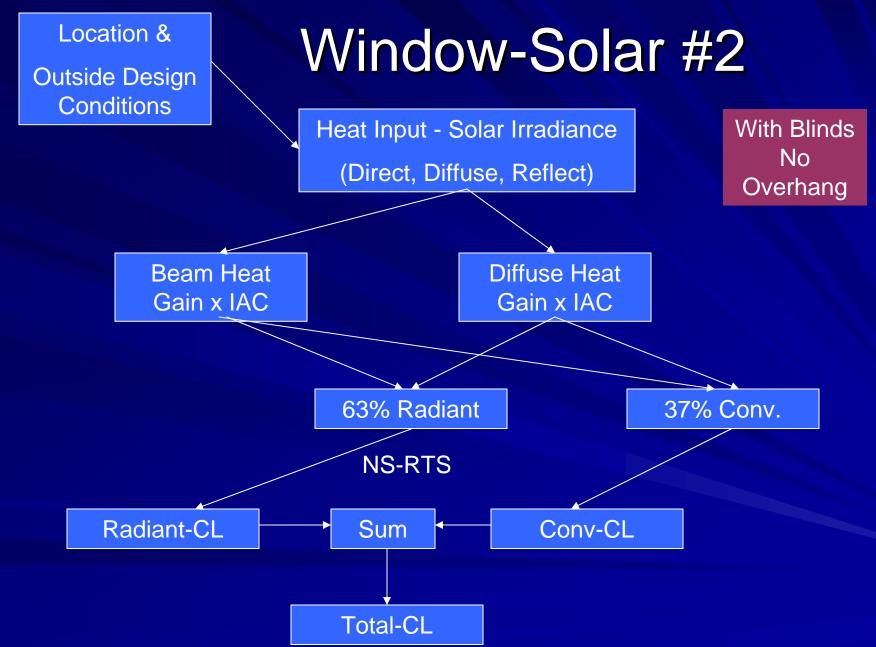
W-Window CL Components

Solar RTS Values

						ิต^	ารางที่	5: So	lar R	TS V	alues							ตารางที่ 5: Solar RTS Values												
			Li	ght					Me	dium					He	avy														
%	Wit	h Car	pet	No	Carp	et	Wit	th Car	pet	N	o Caŋ	et	Wi	th Ca	rpet	N	o Caŋ	oet												
Glass	10% 5	50%	90%	10%	50%	90%	10%	50%	90%	10%	50%	90%	10%	50%	90%	10%	50%	90%												
Zone Type	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18												
Hour											tor,%																			
0	53	55	56	44	45	46	52	54	55	28	29	29		49	51	26	27	28												
1	17	17	17	19	20	20	16	16	15	15	15	15	l .	12	12	l .	13	13												
2	9	9	9	11	11	11	8	8	8	10	10	10		6	6	l .	7	7												
3	5	5	5	7	7	7	5	4	4	7	7	7	4	4	3	l .	5	5												
4	3	3	3	5	5	5	3	3	3	6	6	6	3	3	3	4	4	4												
5	2	2	2	3	3	3	2	2	2	5	5	5	2	2	2	4	4	4												
6	2	2	2	3	2	2	2	1	1	4	4	4	2	2	2	3	3	3												
7	1	1	1	2	2	2	1	1	1	4	3	3	l	2	2		3	3												
8	1	1	1	1	1	1	1	1	1	3	3	3	2	2	2		3	3												
9	1	1	1	1	1	1	1	1	1	3	3	3	ı	2	2		3	3												
10	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	3	3	3												
11	1	1	1	1	1	1	1	1	1	2	2	2	2	2	1	3	3	2												
12	1	1	1	1	1	0	1	1	1	2	2	2	2	1	1	2	2	2												
13	1	1	0	1	0	0	1	1	1	2	2	2	2	1	1	2		2												
14	1	0	0	0	0	0	1	1	1	1	1	1	2	1	1	2	2	2												
15	1	0	0	0	0	0	1	1	1	1	1	1	1	1	1	-	2	2												
16	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	2	2	2												
17	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	2	2	2												
18	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	2	2	2												
19	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	2	2	2												
20	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	2	2	2												
21	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	2	2	2												
22	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	2	1	1												
23	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	2	1	1												
	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100												

SHGC


Table 7-4 Visible Transmission (VT), Shading Coefficients (SC), and Solar Heat Gain Coefficient (SHGC) at Normal Incidence for Single Pane Glass and Insulating Glass


Glazing System	-					SHG(es			ow SHGC Incidence	at	Total Wind Normal In	
Glass Thick,	Center	Center Glazing	Nor	mal				Hemis.	Alumir	num	Other F	rames	All Fra	mes
ID in.	VT	SC	0°	40°	50°	60°	70°	(Diffuse)	Operable	Fixed	Operabl	e Fixed	Operable	Fixed
Uncoated Single Glazing														
la 1/8 Clear	0.90	1.00	0.86	0.85	0.83	0.78	0.67	0.78	0.75	0.78	0.63	0.75	0.65	0.78
1b 1/4 Clear	0.89	0.94	0.81	0.80	0.77	0.73	0.62	0.73	0.71	0.74	0.60	0.71	0.65	0.78
1c 1/8 Bronze	0.68	0.85	0.73	0.71	0.69	0.64	0.55	0.65	0.64	0.67	0.54	0.64	0.49	0.59
1d 1/4 Bronze	0.55	0.73	0.62	0.60	0.58	0.54	0.46	0.55	0.55	0.57	0.46	0.54	0.40	0.48
le 1/8 Green	0.82	0.82	0.71	0.68	0.66	0.62	0.53	0.63	0.62	0.65	0.53	0.62	0.60	0.71
1f 1/4 Green	0.74	0.68	0.58	0.56	0.54	0.51	0.44	0.52	0.51	0.53	0.43	0.51	0.54	0.64
1g 1/8 Gray	0.62	0.82	0.70	0.68	0.66	0.61	0.53	0.63	0.61	0.64	0.52	0.61	0.45	0.54
1h 1/4 Gray	0.43	0.65	0.56	0.53	0.51	0.48	0.41	0.49	0.50	0.51	0.42	0.49	0.31	0.37
li 1/4 Bluegreen	0.75	0.72	0.62	0.59	0.57	0.54	0.46	0.55	0.55	0.57	0.46	0.54	0.54	0.65
Reflective Single Glazing														
1j 1/4 SS on CLR 8%	0.08	0.22	0.19	0.19	0.18	0.17	0.15	0.17	0.18	0.18	0.15	0.17	0.06	0.07
1k 1/4 SS on CLR 14%	0.14	0.29	0.25	0.25	0.24	0.23	0.20	0.23	0.23	0.24	0.19	0.22	0.10	0.12
11 1/4 SS on CLR 20%	0.20	0.36	0.31	0.30	0.30	0.28	0.24	0.28	0.28	0.29	0.24	0.27	0.15	0.17
1m 1/4 SS on GRN 14%	0.12	0.29	0.25	0.25	0.24	0.23	0.20	0.23	0.23	0.24	0.19	0.22	0.09	0.10
ln 1/4 TI on CLR 20%	0.20	0.34	0.29	0.29	0.28	0.26	0.23	0.27	0.27	0.27	0.22	0.26	0.15	0.17
10 1/4 TI on CLR 30%	0.30	0.45	0.39	0.38	0.37	0.35	0.30	0.35	0.35	0.36	0.29	0.34	0.22	0.26
Uncoated Double Glazing	?													
5a 1/8 CLR CLR	0.81	0.87	0.75	0.73	0.70	0.63	0.49	0.65	0.66	0.68	0.55	0.66	0.59	0.71
5b 1/4 CLR CLR	0.78	0.81	0.70	0.68	0.65	0.58	0.45	0.60	0.61	0.64	0.52	0.61	0.57	0.68
5c 1/8 BRZ CLŘ	0.62	0.72	0.62	0.59	0.57	0.51	0.39	0.53	0.55	0.57	0.46	0.54	0.45	0.54
5d 1/4 BRZ CLR	0.48	0.59	0.50	0.47	0.45	0.40	0.31	0.42	0.45	0.46	0.37	0.44	0.35	0.42
5e 1/8 GRN CLR	0.74	0.70	0.60	0.57	0.55	0.49	0.38	0.51	0.53	0.55	0.45	0.53	0.54	0.64
5f 1/4 GRN CLR	0.66	0.54	0.47	0.44	0.42	0.38	0.30	0.40	0.42	0.43	0.35	0.41	0.48	0.57
5g 1/8 GRY CLR	0.56	0.69	0.59	0.57	0.54	0.48	0.37	0.50	0.52	0.54	0.44	0.52	0.41	0.49
5h 1/4 GRY CLR	0.40	0.51	0.44	0.42	0.40	0.35	0.28	0.38	0.39	0.41	0.33	0.39	0.29	0.35
5i. 1/4 BLUGRN CLR	0.67	0.58	0.50	0.47	0.45	0.40	0.32	0.43	0.45	0.46	0.37	0.44	0.49	0.58
5j 1/4 HI-P GRN CLR	0.59	0.46	0.39	0.37	0.35	0.31	0.25	0.33	0.35	0.36	0.29	0.34	0.43	0.51

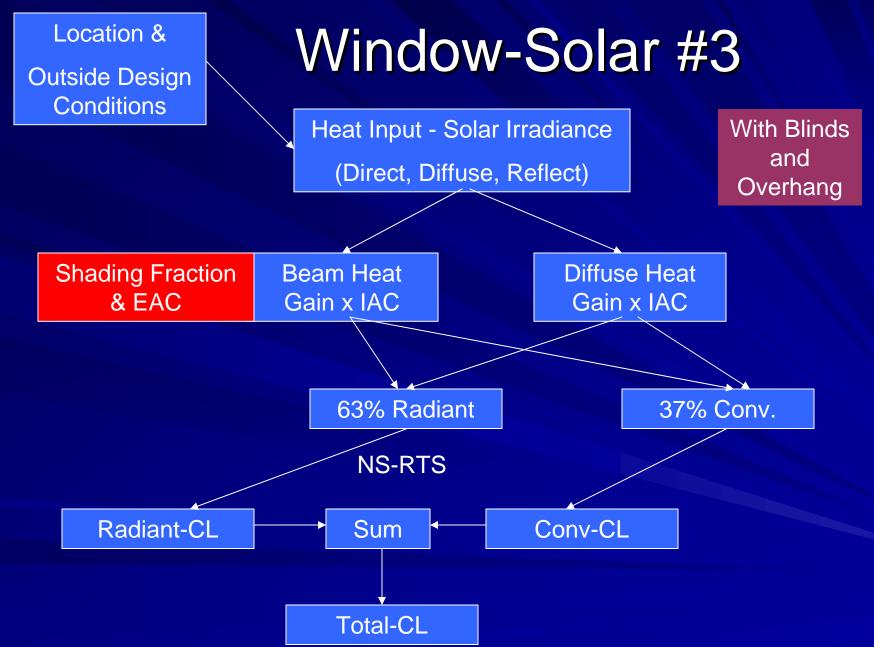

U-Factors for Glass

	Table 4 U-Factors for Various Fenestration Products in Btu/h·ft²·°F												
								Vertical I	ıstallation				
Prod	luct Type	Glass	Only	Operable	(including	sliding and sv	winging g	lass doors)			Fixed		
Fran	пе Туре	Center of	Edge of	Aluminum Without Thermal	with	Reinforced Vinyl/ Aluminum	Wood/	Insulated Fiberglass/	Aluminum Without Thermal	with	Reinforced Vinyl/ Aluminum	Wood/	Insulated Fiberglass/
ID	Glazing Type	Glass	Glass	Break	Break	Clad Wood	Vinyl	Vinyl	Break	Break	Clad Wood	Vinyl	Vinyl
	Single Glazing												
1	1/8 in. glass	1.04	1.04	1.27	1.08	0.90	0.89	0.81	1.13	1.07	0.98	0.98	0.94
2	1/4 in. acrylic/polycarbonate	0.88	0.88	1.14	0.96	0.79	0.78	0.71	0.99	0.92	0.84	0.84	0.81
3	1/8 in. acrylic/polycarbonate	0.96	0.96	1.21	1.02	0.85	0.83	0.76	1.06	1.00	0.91	0.91	0.87
	Double Glazing												
4	1/4 in. air space	0.55	0.64	0.87	0.65	0.57	0.55	0.49	0.69	0.63	0.56	0.56	0.53
5	1/2 in. air space	0.48	0.59	0.81	0.60	0.53	0.51	0.44	0.64	0.57	0.50	0.50	0.48
6	1/4 in. argon space	0.51	0.61	0.84	0.62	0.55	0.53	0.46	0.66	0.59	0.53	0.52	0.50
7	1/2 in. argon space	0.45	0.57	0.79	0.58	0.51	0.49	0.43	0.61	0.54	0.48	0.48	0.45
	Double Glazing, $e = 0.60$ on s	surface 2 or	3										
8	1/4 in. air space	0.52	0.62	0.84	0.63	0.55	0.53	0.47	0.67	0.60	0.54	0.53	0.51
9	1/2 in. air space	0.44	0.56	0.78	0.57	0.50	0.48	0.42	0.60	0.53	0.47	0.47	0.45
10	1/4 in. argon space	0.47	0.58	0.81	0.59	0.52	0.50	0.44	0.63	0.56	0.50	0.49	0.47
11	1/2 in. argon space	0.41	0.54	0.76	0.55	0.48	0.46	0.40	0.58	0.51	0.45	0.44	0.42
	Double Glazing, $e = 0.40$ on s	surface 2 or	3										
12	1/4 in. air space	0.49	0.60	0.82	0.61	0.53	0.51	0.45	0.64	0.58	0.51	0.51	0.49
13	1/2 in. air space	0.40	0.54	0.75	0.54	0.48	0.45	0.40	0.57	0.50	0.44	0.44	0.41
14	1/4 in. argon space	0.43	0.56	0.78	0.57	0.50	0.47	0.41	0.59	0.53	0.46	0.46	0.44
15	1/2 in. argon space	0.36	0.51	0.72	0.52	0.45	0.43	0.37	0.53	0.47	0.41	0.40	0.38
	Double Glazing, $e = 0.20$ on s	surface 2 or	3										
16	1/4 in. air space	0.45	0.57	0.79	0.58	0.51	0.49	0.43	0.61	0.54	0.48	0.48	0.45
17	1/2 in. air space	0.35	0.50	0.71	0.51	0.44	0.42	0.36	0.53	0.46	0.40	0.39	0.37
18	1/4 in. argon space	0.38	0.52	0.74	0.53	0.46	0.44	0.38	0.55	0.48	0.42	0.42	0.40
19	1/2 in. argon space	0.30	0.46	0.67	0.47	0.41	0.39	0.33	0.48	0.41	0.36	0.35	0.33

Insulating Glass Unit (IGU)

Venetian Blinds Shading Coefficients (IAC)

Table 7-8 Shading Coefficients for Single Glass with Indoor Shading by Venetian Blinds or Roller Shades

					Type of Shading			
						Roller Shae	de	
	Nominal	Solar	Venetia	n Blinds	Opa	aque	Translucent	
Type of Glass	Thickness, ² in.	Transmittance ^b	Medium	Light	Dark	White	Light	
Clear	3/32°	0.87 to 0.80	0.74 ^d (0.63) ^e	0.67 ^d (0.58) ^e	0.81	0.39	0.44	
Clear	1/4 to 1/2	0.80 to 0.71						
Clear pattern	1/8 to 1/2	0.87 to 0.79						
Heat-absorbing pattern	1/8							
Tinted	3/16, 7/32	0.74, 0.71						
Heat-absorbing ^f	3/16, 1/4	0.46						
Heat-absorbing pattern	3/16, 1/4	_	0.57	0.53	0.45	0.30	0.36	
Tinted	1/8, 7/32	0.59, 0.45					,	
Heat-absorbing or pattern	_	0.44 to 0.30	0.54	0.52	0.40	0.28	0.32	
Heat-absorbing ^f	3/8	0.34						
Heat-absorbing or pattern		0.29 to 0.15						
	_	0.24	0.42	0.40	0.36	0.28	0.31	
Reflective coated glass	S.C. = 0.30g		0.25	0.23				
-	= 0.40		0.33	0.29				
	= 0.50		0.42	0.38				
	= 0.60		0.50	0.44				

aRefer to manufacturers' literature for values.

^bFor vertical blinds with opaque white and beige louvers in the tightly closed position, SC is 0.25 and 0.29 when used with glass of 0.71 to 0.80 transmittance.

^cTypical residential glass thickness.

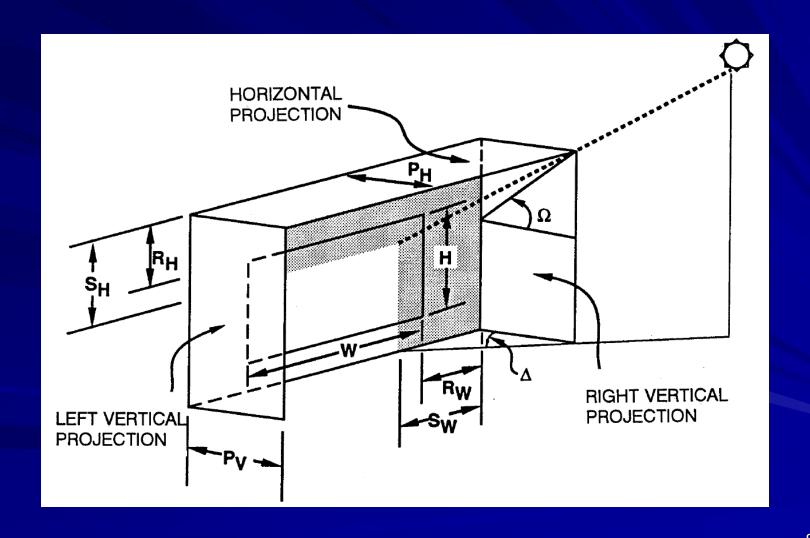
^dFrom Van Dyck and Konen (1982), for 45° open venetian blinds, 35° solar incidence, and 35° profile angle.

^eValues for closed venetian blinds. Use these values only when operation is automated for solar gain reduction (as opposed to daylight use).

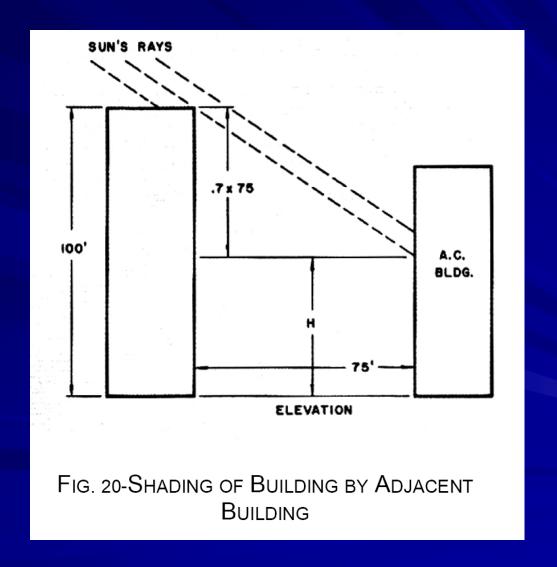
Refers to gray, bronze, and green tinted heat-absorbing glass.

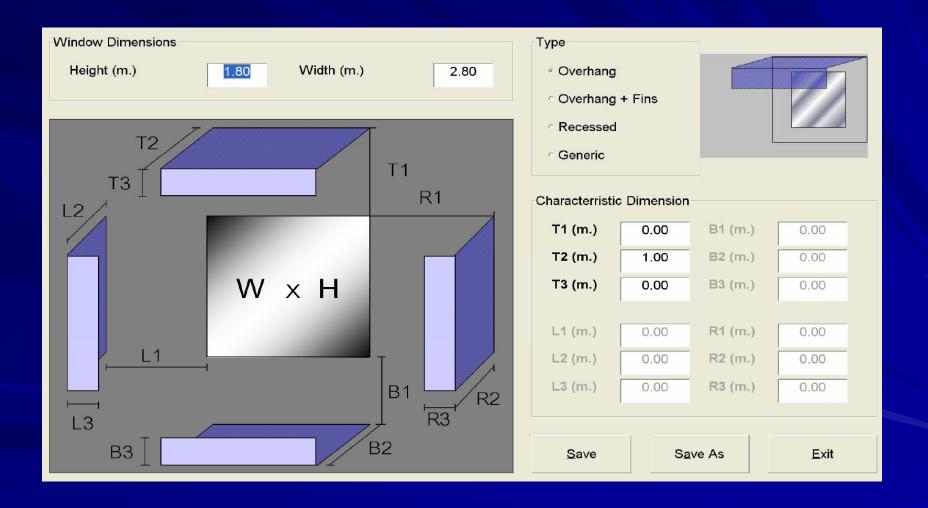
gSC for glass with no shading device.

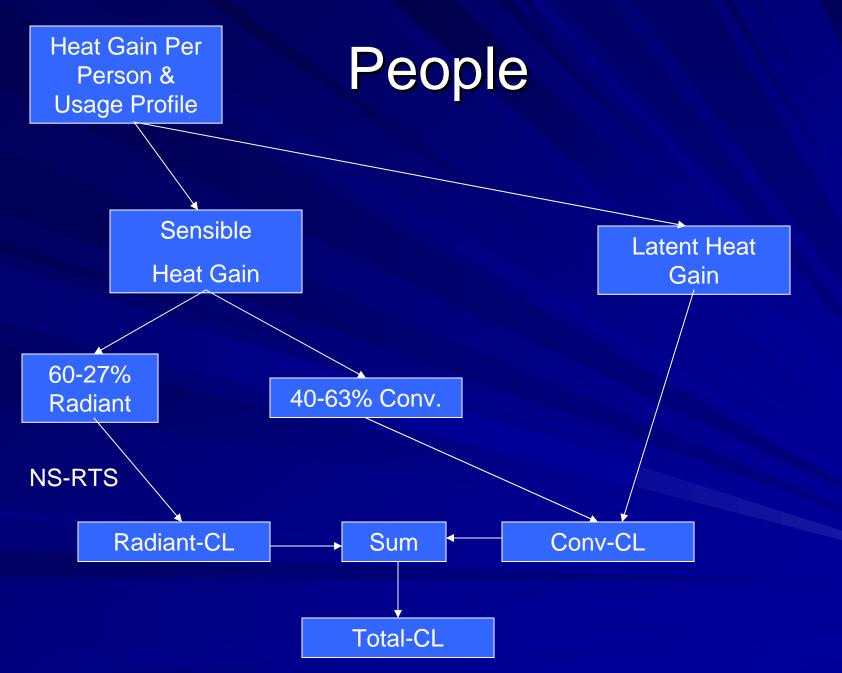
Venetian Blinds


Draperies IAC

	Glass	Glazing	IAC									
Glazing	Trans- mission	SHGC (No Drapes)	A	В	C	D	Е	F	G	Н	I	J
Single glass												
1/8 in. clear	0.86	0.87	0.87	0.82	0.74	0.69	0.64	0.59	0.53	0.48	0.42	0.37
1/4 in. clear	0.8	0.83	0.84	0.79	0.74	0.68	0.63	0.58	0.53	0.47	0.42	0.37
1/2 in. clear	0.71	0.77	0.84	0.80	0.75	0.69	0.64	0.59	0.55	0.49	0.44	0.40
1/4 in. heat absorbing	0.46	0.58	0.85	0.81	0.78	0.73	0.69	0.66	0.61	0.57	0.54	0.49
1/2 in. heat absorbing	0.24	0.44	0.86	0.84	0.80	0.78	0.76	0.72	0.68	0.66	0.64	0.60
Reflective coated	_	0.52	0.95	0.90	0.85	0.82	0.77	0.72	0.68	0.63	0.60	0.55
	_	0.44	0.92	0.88	0.84	0.82	0.78	0.76	0.72	0.68	0.66	0.62
	_	0.35	0.90	0.88	0.85	0.83	0.80	0.75	0.73	0.70	0.68	0.65
	_	0.26	0.83	0.80	0.80	0.77	0.77	0.77	0.73	0.70	0.70	0.67
Insulating glass, 1/4-in. air space												
(1/8 in. out and 1/8 in. in)	0.76	0.77	0.84	0.80	0.73	0.71	0.64	0.60	0.54	0.51	0.43	0.40
Insulating glass 1/2-in. air space												
Clear out and clear in	0.64	0.72	0.80	0.75	0.70	0.67	0.63	0.58	0.54	0.51	0.45	0.42
Heat absorbing out and clear in	0.37	0.48	0.89	0.85	0.82	0.78	0.75	0.71	0.67	0.64	0.60	0.58
Reflective coated	_	0.35	0.95	0.93	0.93	0.90	0.85	0.80	0.78	0.73	0.70	0.70
	_	0.26	0.97	0.93	0.90	0.90	0.87	0.87	0.83	0.83	0.80	0.80
	_	0.17	0.95	0.95	0.90	0.90	0.85	0.85	0.80	0.80	0.75	0.75


Draperies


External Shading


External Shading

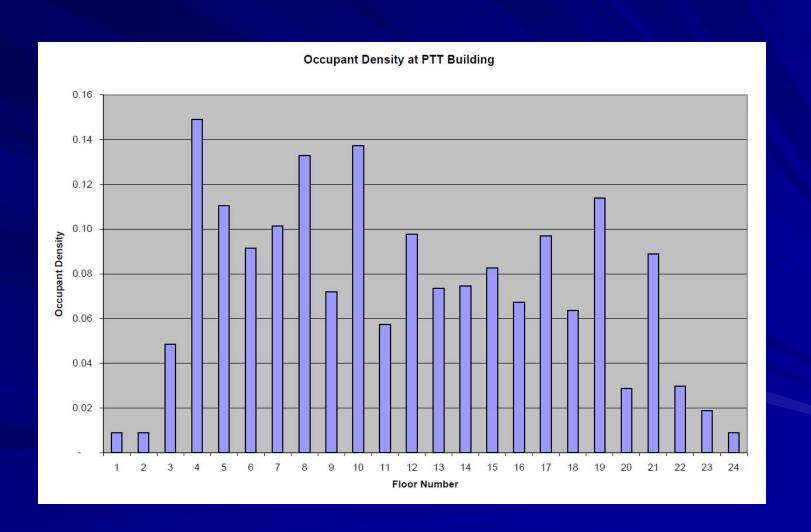
External Shading

People Heat Gain

People Heat Gain

Table 1 Representative Rates at Which Heat and Moisture Are Given Off by Human Beings in Different States of Activity

		Total H	eat, Btu/h	Sensible	Latent		Heat that is
Degree of Activity	Location	Adult Adjusted, Male M/F ^a		Heat, Btu/h	Heat, Btu/h	Low V	iant ^b High <i>V</i>
Seated at theater	Theater, matinee	390	330	225	105		
Seated at theater, night	Theater, night	390	350	245	105	60	27
Seated, very light work	Offices, hotels, apartments	450	400	245	155		
Moderately active office work	Offices, hotels, apartments	475	450	250	200		
Standing, light work; walking	Department store; retail store	550	450	250	200	58	38
Walking, standing	Drug store, bank	550	500	250	250		
Sedentary work	Restaurant ^c	490	550	275	275		
Light bench work	Factory	800	750	275	475		
Moderate dancing	Dance hall	900	850	305	545	49	35
Walking 3 mph; light machine work	Factory	1000	1000	375	625		
$Bowling^d$	Bowling alley	1500	1450	580	870		
Heavy work	Factory	1500	1450	580	870	54	19
Heavy machine work; lifting	Factory	1600	1600	635	965		
Athletics	Gymnasium	2000	1800	710	1090		


Notes:

- Tabulated values are based on 75°F room dry-bulb temperature. For 80°F room dry bulb, the total heat remains the same, but the sensible heat values should be decreased by approximately 20%, and the latent heat values increased accordingly.
- 2. Also refer to Table 4, Chapter 8, for additional rates of metabolic heat generation.
- 3. All values are rounded to nearest 5 Btu/h.
- ^aAdjusted heat gain is based on normal percentage of men, women, and children for the application listed, with the postulate that the gain from an adult female is

85% of that for an adult male, and that the gain from a child is 75% of that for an adult male.

- ^b Values approximated from data in <u>Table 6</u>, <u>Chapter 8</u>, where *V* is air velocity with limits shown in that table.
- ^cAdjusted heat gain includes 60 Btu/h for food per individual (30 Btu/h sensible and 30 Btu/h latent).
- ^dFigure one person per alley actually bowling, and all others as sitting (400 Btu/h) or standing or walking slowly (550 Btu/h).

Occupant Density (PTT Bld.)

Motor Heat Gain (Power)

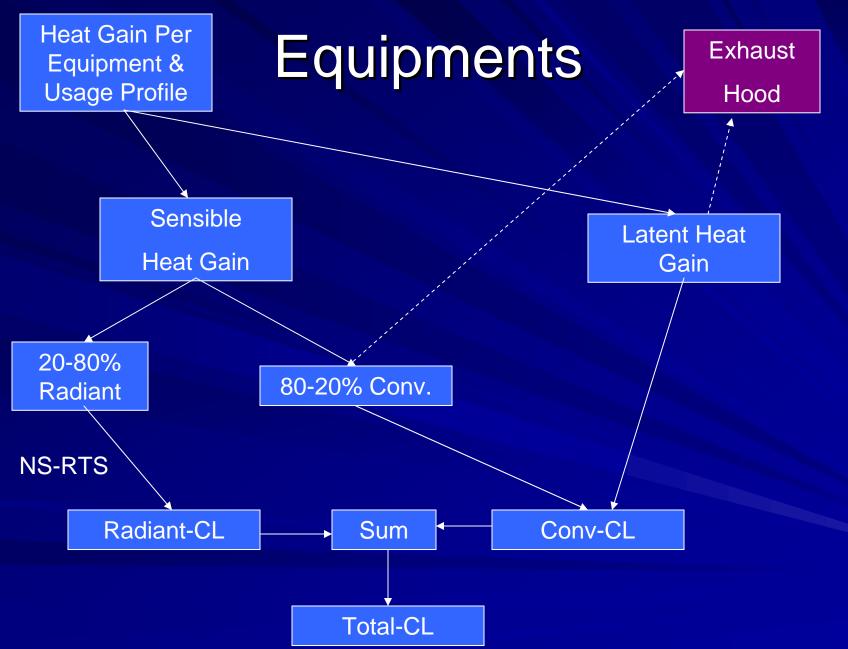

Motor Heat Gain

Table 3A Average Efficiencies and Related Data Representative of Typical Electric Motors

Location of Motor and Driven
Equipment with Respect to
Conditioned Space or Airstream

				Conditioned Space or Airstream				
Motor				A	В	C		
Name- plate or Rated Horse- power	Motor Type	Nominal rpm	Full Load Motor Effi- ciency, %	Motor in, Driven Equip- ment in, Btu/h	Motor out, Driven Equip- ment in, Btu/h	Motor in, Driven Equip- ment out, Btu/h		
0.05	Shaded pole	1500	35	360	130	240		
	Shaded pole	1500	35	580	200	380		
	Shaded pole	1500	35	900	320	590		
0.16	Shaded pole	1500	35	1,160	400	760		
0.25	Split phase	1750	54	1,180	640	540		
0.33	Split phase	1750	56	1,500	840	660		
0.50	Split phase	1750	60	2,120	1,270	850		
0.75	3-phase	1750	72	2,650	1,900	740		
1	3-phase	1750	75	3,390	2,550	850		
1.5	3-phase	1750	77	4,960	3,820	1,140		
2	3-phase	1750	79	6,440	5,090	1,350		
3	3-phase	1750	81	9,430	7,640	1,790		
5	3-phase	1750	82	15,500	12,700	2,790		
7.5	3-phase	1750	84	22,700	19,100	3,640		

Appliances Heat Gain

Heat Gain from Equipments

Table 7-18 Heat Gain from Selected Office and Hospital Equipment

Appliance	Size	Maximum Input Rating, Btu/h	Standby Input Rating, Btu/h	Recommended Rate of Heat Gain, Btu/h
Check processing workstation	12 pockets	16400	8410 ·	8410
Computer devices				
Card puncher	_	2730 to 6140	2200 to 4800	2200 to 4800
Card reader	_	7510	5200	5200
Communication/transmission	_	6140 to 15700	5600 to 9600	5600 to 9600
Disk drives/mass storage	_	3410 to 34100	3412 to 22420	3412 to 22420
Magnetic ink reader	_	3280 to 16000	2600 to 14400	2600 to 14400
Microcomputer	16 to 640 Kbyte ^a	340 to 2050	300 to 1800	300 to 1800
Minicomputer	_	7500 to 15000	7500 to 15000	7500 to 15000
Optical reader	_	10240 to 20470	8000 to 17000	8000 to 17000
Plotters		256	128	214
Printers				
Letter quality	30 to 45 char/min	1200	600	1000
Line, high speed	5000 or more lines/min	4300 to 18100	2160 to 9040	2500 to 13000
Line, low speed	300 to 600 lines/min	1540	770	1280
Tape drives		4090 to 22200	3500 to 15000	3500 to 15000
Terminal	_	310 to 680	270 to 600	270 to 600
Copiers/Duplicators				
Blue print		3930 to 42700	1710 to 17100	3930 to 42700
Copiers (large) -	30 to 67 ^a copies/min	5800 to 22500	3070	5800 to 22500
Copiers (small)	6 to 30 ^a copies/min	1570 to 5800	1020 to 3070	1570 to 5800
Feeder .		100	_	100
Microfilm printer	_	1540		1540
Sorter/collator	-	200 to 2050	_	200 to 2050

Hood Load Factor

Table 4A Hooded Electric Appliance Usage Factors, Radiation Factors, and Load Factors

Appliance	Usage Factor ${F}_{U}$	Radiation Factor F_R	Load Factor $F_L = F_U F_R$ Elec/Steam
Griddle	0.16	0.45	0.07
Fryer	0.06	0.43	0.03
Convection oven	0.42	0.17	0.07
Charbroiler	0.83	0.29	0.24
Open-top range without oven	0.34	0.46	0.16
Hot-top range			
without oven	0.79	0.47	0.37
with oven	0.59	0.48	0.28
Steam cooker	0.13	0.30	0.04

Sources: Alereza and Breen (1984), Fisher (1998).

Office Equipment Load Factor

	Table 1	1 Recommended Load Factors for Various Types of Offices
Load Density of Office	Load Factor, W/m ²	Description
Light	5.4	Assumes 15.5 m ² /workstation (6.5 workstations per 100 m ²) with computer and monitor at each plus printer and fax. Computer, monitor, and fax diversity 0.67, printer diversity 0.33.
Medium	10.8	Assumes 11.6 m ² /workstation (8.5 workstations per 100 m ²) with computer and monitor at each plus printer and fax. Computer, monitor, and fax diversity 0.75, printer diversity 0.50.
Medium/ Heavy	16.1	Assumes 9.3 m ² /workstation (11 workstations per 100 m ²) with computer and monitor at each plus printer and fax. Computer and monitor diversity 0.75, printer and fax diversity 0.50.
Heavy 	21.5	Assumes 7.8 m ² /workstation (13 workstations per 100 m ²) with computer and monitor at each plus printer and fax. Computer and monitor diversity 1.0, printer and fax diversity 0.50.

Actual Load Factor

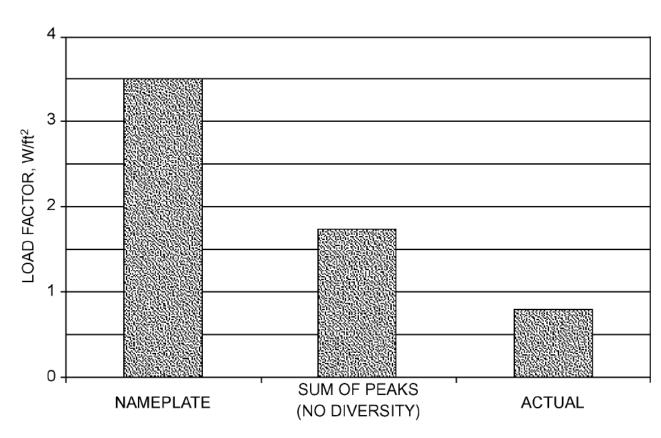


Fig. 4 Office Equipment Load Factor Comparison (Wilkins and McGaffin 1994)

Ventilation/Infiltration Heat Gain

CFM, Design Outside Air Conditions & Usage Profile Sensible **Latent Heat Heat Gain** Gain Sum Total-CL

Outdoor Air Load

Ventilation and Infiltration Air

$$q_{sensible} = 1.10 Q (t_o - t_i)$$

$$q_{latent} = 4840 \ Q \left(W_o - W_i \right)$$

$$q_{total} = 4.5 Q (h_o - h_i)$$

Q = ventilation cfm from ASHRAE Standard 62; infiltration from Chapter 5

 t_{o} , t_{i} = outside, inside air temperature, °F

 W_{o} , W_{i} = outside, inside air humidity ratio, lb (water)/lb (dry air)

 $h_{o'} h_i$ = outside, inside air enthalpy, Btu/lb (dry air)

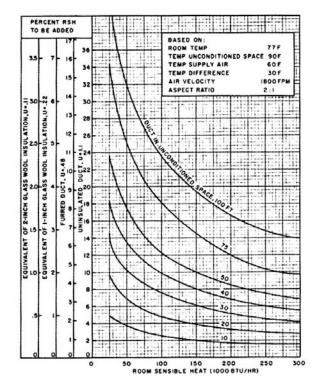
Ventilation CFM: ASHRAE Standard 62-2007

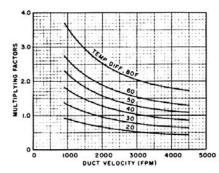
TABLE 6-1 MINIMUM VENTILATION RATES IN BREATHING ZONE (continued)

(This table is not valid in isolation; it must be used in conjunction with the accompanying notes.)

	People (Outdoor	Area Outdoor			Defa	Air Class			
Occupancy Category	Air Rate R _p		Air Rate R _a		Notes	Occupant Density (see Note 4)		Combined Outdoor Air Rate (see Note 5)		
	cfm/person	L/s·person	cfm/ft ²	L/s·m ²		#/1000 ft ² or #/100 m ²	cfm/person L/s·person			
Office Buildings										
Office space	5	2.5	0.06	0.3		5	17	8.5	1	
Reception areas	.5	2.5	0.06	0.3		30	7	3.5	1	
Telephone/data entry	5	2.5	0.06	0.3		60	6	3.0	1	
Main entry lobbies	5	2.5	0.06	0.3		10	11	5.5	1	
Miscellaneous Spaces										
Bank vaults/safe deposit	5	2.5	0.06	0.3		5	17	8.5	2	
Computer (not printing)	5	2.5	0.06	0.3		4	20	10.0	1	
Electrical equipment rooms	-	-	0.06	0.3	В	-			1	

Example: Calculation of Ventilation Rate


- 1) Floor Space = 2,000 Sq.m (Az)
- 2) Number of Occupant = $0.1 \times 2000 = 200 \text{ (Pz)}$
- 3) People Outdoor Air Rate = 5 cfm/person (Rp)
- 4) Aera Outdoor Air Rate = 0.06 cfm/Sq.ft (Ra)
- 5) Ventilation Rate (Vbz) = Rp x Pz + Ra x Az
 - $= 5 \times 200 + 0.06 \times 2,000 \times 10.76$
 - = 1,000 + 1291
 - = 2,291 cfm
 - = 11.46 cfm/person
- 6) Use 2,400 cfm = 12 cfm/person


Miscellaneous

Duct Heat Gain

CHART 3- HEAT GAIN TO SUPPLY DUCT

Percent of Room Sensible Heat

MULTIPLYING FACTORS FOR OTHER ROOM TEMPERATURES

Room Temp	Multiplying Fact			
75	1.10			
76	1.06			
77	1.00			
78	0.97			
79	0.94			
80	0.92			

$$Q = UPI \times \frac{2.165 \times AV}{(2.165 \times AV) + UPI} (t_3-t_1)$$

where:

Q = duct heat gain (Btu/hr)

U = duct heat transmission factor (Btu/hr-sq ft-F)

P = rectangular duct perimeter (ft)

1 = duct length (ft)

A = duct area (sq ft)

V = duct velocity (fpm)

t1 = temperature of supply air entering duct (F)

t3 = temperature of surrounding air (F)

Based on formulas in ASHRAE Guide 1963, p. 184, 185.

Duct Leak Loss

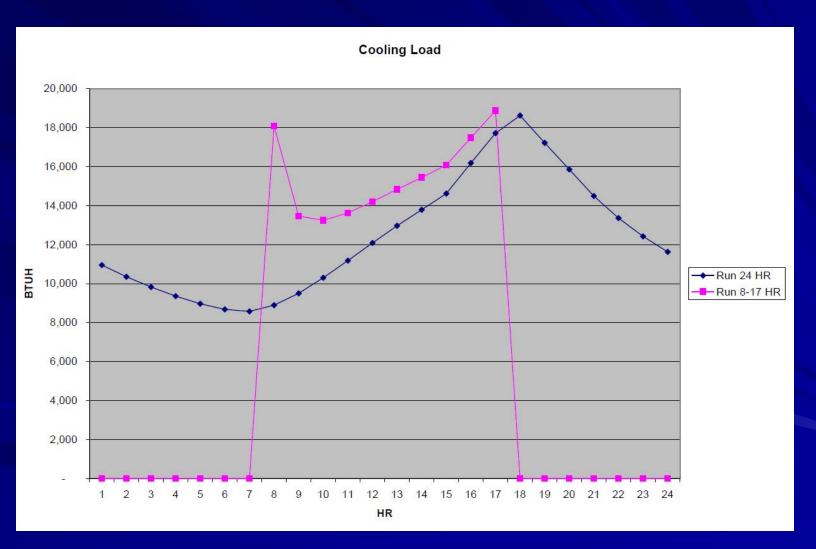
	Table 9 Leakage as Percentage of Airflow ^{a,b}								
Leakage	System cfm per	Static Pressure, in. of water							
Class	ft ² Duct Surface ^c	0.5	1	2	3	4	6		
48	2	15	24	38	49	59	77		
	2.5	12	19	30	39	47	62		
	3	10	16	25	33	39	51		
	4	7.7	12	19	25	30	38		
	5	6.1	9.6	15	20	24	31		
24	2	7.7	12	19	25	30	38		
	2.5	6.1	9.6	15	20	24	31		
	3	5.1	8.0	13	16	20	26		
	4	3.8	6.0	9.4	12	15	19		
	5	3.1	4.8	7.5	9.8	12	15		
12	2	3.8	6	9.4	12	15	19		
	2.5	3.1	4.8	7.5	9.8	12	15		
	3	2.6	4.0	6.3	8.2	9.8	13		
	4	1.9	3.0	4.7	6.1	7.4	9.6		
	5	1.5	2.4	3.8	4.9	5.9	7.7		
6	2	1.9	3	4.7	6.1	7.4	9.6		
	2.5	1.5	2.4	3.8	4.9	5.9	7.7		
	3	1.3	2.0	3.1	4.1	4.9	6.4		
	4	1.0	1.5	2.4	3.1	3.7	4.8		
	5	0.8	1.2	1.9	2.4	3.0	3.8		
3	2	1.0	1.5	2.4	3.1	3.7	4.8		
	2.5	0.8	1.2	1.9	2.4	3.0	3.8		
	3	0.6	1.0	1.6	2.0	2.5	3.2		
	4	0.5	0.8	1.3	1.6	2.0	2.6		
	5	0.4	0.6	0.9	1.2	1.5	1.9		

Duct Leakage Class

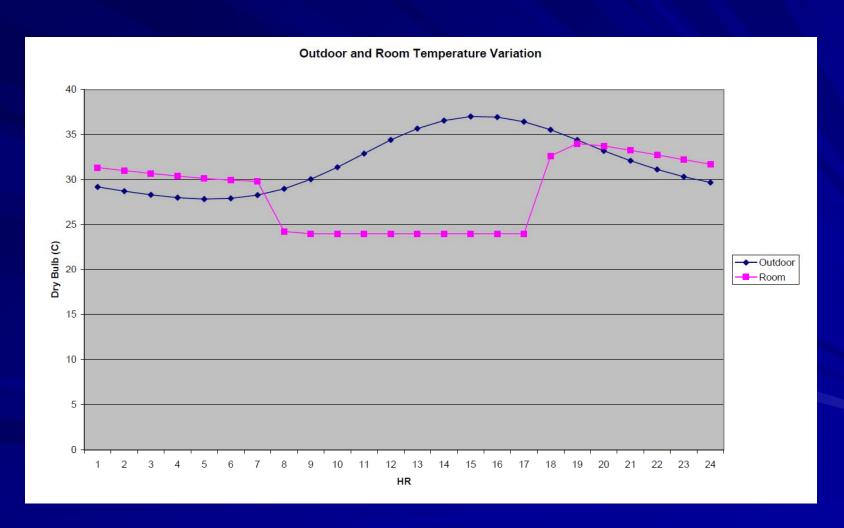
	Predicted Leakage Class C_L [Eq. (43)				
Duct Type	Sealed ^{b,c}	Unsealed ^c			
Metal (flexible excluded)					
Round and flat oval	3	30			
		(6 to 70)			
Rectangular					
≤ 2 in. of water	12	48			
(both positive and negative pre	essures)	(12 to 110)			
> 2 and ≤ 10 in. of water	6	48			
(both positive and negative pre	essures)	$(12 \text{ to } 110)^{c}$			
Flexible					
Metal, aluminum	8	30			
		(12 to 54)			
Nonmetal	12	30			
		(4 to 54)			
Fibrous glass					
Round	3	na			
Rectangular	6	na			

Duct Heat Gain & Leak Loss

Duct Heat Gain in % of RSH


- -Supply Duct 1.5% (Typical Value)
- -Return Duct 1.5% (Typical Value)

Duct Leakage in % of Total Air Supply


- -Supply Duct 3% (Typical Value)
- -Return Duct 0% (Typical Value)

Note that these value are only approximated.

Effect of Internal Mass

Room Temperature Variation

Diversity Factor & Block Load

TABLE 14-TYPICAL DIVERSITY FACTORS

FOR LARGE BUILDINGS

(Apply to Refrigeration Capacity)

TYPE OF	DIVERSITY FACTOR	
APPLICATION	People	Lights
Office	.75 to .90	.70 to .85
Apartment, Hotel	.40 to .60	.30 to .50
Department Store	.80 to .90	.90 to 1.0
Industrial*	.85 to .95	.80 to .90